This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246791 #23 Nov 25 2014 10:03:38 %S A246791 1,4,15,136,2128,15453,479403,1184231,10975072,27112368,175600366, %T A246791 2304656281,14896902677,59331462112 %N A246791 Smallest number m such that for 0 <= k < n, np(m+k) = np(m)+k, where np(t) is number of primes p with prime(t) < p < prime(t)^(1 + 1/t). %C A246791 np(m) = A182134(m). %C A246791 According to the definition, numbers np(a(n)), np(a(n)+1), ..., np(a(n)+n-2), np(a(n)+n-1) are n consecutive numbers in ascending order. %C A246791 a(15) > 10^12. - _Robert Price_, Nov 19 2014 %C A246791 See A247116 for the corresponding values of np. %e A246791 a(8) = 1184231 since np(1184231) = 17, np(1184231+1) = 18, ..., np(1184231+6) = 23, np(1184231+7) = 24 are 8 consecutive numbers and 1184231 is the smallest number with this property. %t A246791 np[n_] := np[n] = Length[Select[Range[Prime[n]+1, Prime[n]^(1 + 1/n)], PrimeQ]]; a[1]=1; a[n_] := a[n] = (For[m = a[n-1], c = Table[np[m+k], {k,0,n-1}]; c != Range[Min[c], Max[c]], m++]; m); Do[Print[a[n]],{n, 8}] %o A246791 (PARI) np(t) = primepi(prime(t)^(1 + 1/t)) - t; %o A246791 ok(m, n) = {for (k=0, n-1, if (np(m+k) != np(m)+k, return(0));); return (1);} %o A246791 a(n) = {m = 1; while (! ok(m, n), m++); m;} \\ _Michel Marcus_, Nov 25 2014 %Y A246791 Cf. A000040, A182134, A246792, A247116. %K A246791 nonn,more %O A246791 1,2 %A A246791 _Farideh Firoozbakht_, Oct 16 2014 %E A246791 a(9)-a(14) from _Robert Price_, Nov 19 2014