cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246799 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-3)^k.

This page as a plain text file.
%I A246799 #14 Nov 22 2014 03:54:37
%S A246799 1,7,2,34,20,3,142,128,39,4,547,668,309,64,5,2005,3098,1929,604,95,6,
%T A246799 7108,13304,10434,4384,1040,132,7,24604,54128,51258,27064,8600,1644,
%U A246799 175,8,83653,211592,234966,149536,59630,15252,2443,224,9,280483,802082,1022286,761896,365810,117312,25123,3464,279,10
%N A246799 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-3)^k.
%C A246799 Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = A_0*(x-3)^0 + A_1*(x-3)^1 + A_2*(x-3)^2 + ... + A_n*(x-3)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
%F A246799 T(n,0) = ((2*n+1)*3^(n+1) + 1)/4, for n >= 0.
%F A246799 T(n,n-1) = n*(3*n+4), for n >= 1.
%F A246799 Row n sums to A014916(n+1) = T(2*n+1,0) of A246788.
%e A246799 Triangle starts:
%e A246799 1;
%e A246799 7,           2;
%e A246799 34,         20,       3;
%e A246799 142,       128,      39,      4;
%e A246799 547,       668,     309,     64,      5;
%e A246799 2005,     3098,    1929,    604,     95,      6;
%e A246799 7108,    13304,   10434,   4384,   1040,    132,     7;
%e A246799 24604,   54128,   51258,  27064,   8600,   1644,   175,    8;
%e A246799 83653,  211592,  234966, 149536,  59630,  15252,  2443,  224,   9;
%e A246799 280483, 802082, 1022286, 761896, 365810, 117312, 25123, 3464, 279, 10;
%e A246799 ...
%o A246799 (PARI) T(n, k) = (k+1)*sum(i=0, n-k, 3^i*binomial(i+k+1, k+1))
%o A246799 for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
%Y A246799 Cf. A246797, A014915, A140676, A246788.
%K A246799 nonn,tabl
%O A246799 0,2
%A A246799 _Derek Orr_, Nov 15 2014