This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246830 #30 May 22 2025 10:21:40 %S A246830 0,3,2,10,7,4,15,20,13,6,36,29,22,15,8,45,38,31,40,25,10,54,47,72,57, %T A246830 42,27,12,63,104,89,74,59,44,29,14,136,121,106,91,76,61,46,31,16,153, %U A246830 138,123,108,93,78,63,80,49,18,170,155,140,125,110,95,144,113,82,51,20 %N A246830 T(n,k) is the concatenation of n-k and n+k in binary; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A246830 Alois P. Heinz, <a href="/A246830/b246830.txt">Rows n = 0..127, flattened</a> %e A246830 Triangle T(n,k) begins: %e A246830 0 %e A246830 3 2 %e A246830 10 7 4 %e A246830 15 20 13 6 %e A246830 36 29 22 15 8 %e A246830 45 38 31 40 25 10 %e A246830 54 47 72 57 42 27 12 %e A246830 Triangle T(n,k) written in binary (with | denoting the concat operation) begins: %e A246830 |0 %e A246830 1|1 |10 %e A246830 10|10 1|11 |100 %e A246830 11|11 10|100 1|101 |110 %e A246830 100|100 11|101 10|110 1|111 |1000 %e A246830 101|101 100|110 11|111 10|1000 1|1001 |1010 %e A246830 110|110 101|111 100|1000 11|1001 10|1010 1|1011 |1100 %p A246830 f:= proc(i, j) local r, h, k; r:=0; h:=0; k:=j; %p A246830 while k>0 do r:=r+2^h*irem(k, 2, 'k'); h:=h+1 od; k:=i; %p A246830 while k>0 do r:=r+2^h*irem(k, 2, 'k'); h:=h+1 od; r %p A246830 end: %p A246830 T:= (n, k)-> f(n-k, n+k): %p A246830 seq(seq(T(n, k), k=0..n), n=0..14); %t A246830 f[i_, j_] := Module[{r, h, k, m}, r=0; h=0; k=j; While[k>0, {k, m} = QuotientRemainder[k, 2]; r = r+2^h*m; h = h+1]; k=i; While[k>0, {k, m} = QuotientRemainder[k, 2]; r = r+2^h*m; h = h+1]; r]; T[n_, k_] := f[n-k, n+k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Oct 03 2016, adapted from Maple *) %o A246830 (Haskell) %o A246830 import Data.Function (on) %o A246830 a246830 n k = a246830_tabl !! n !! k %o A246830 a246830_row n = a246830_tabl !! n %o A246830 a246830_tabl = zipWith (zipWith f) a051162_tabl a025581_tabl where %o A246830 f x y = foldr (\b v -> 2 * v + b) 0 $ x |+| y %o A246830 (|+|) = (++) `on` a030308_row %o A246830 -- _Reinhard Zumkeller_, Sep 04 2014 %o A246830 (Python) %o A246830 A246830 = [] %o A246830 for n in range(10**2): %o A246830 for k in range(n): %o A246830 A246830.append(int(bin(n-k)[2:]+bin(n+k)[2:],2)) %o A246830 A246830.append(2*n) # _Chai Wah Wu_, Sep 05 2014 %Y A246830 Column k=0 gives A020330. %Y A246830 T(n+1,n) gives A080565(n+1). %Y A246830 T(2n,n) gives A246831. %Y A246830 Main diagonal gives A005843. %Y A246830 Cf. A007088, A030308, A051162, A025581, A246520 (row maxima). %K A246830 nonn,tabl,base,look,nice %O A246830 0,2 %A A246830 _Alois P. Heinz_, Sep 04 2014