This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246839 #29 May 22 2025 10:21:40 %S A246839 0,0,0,0,0,5,5,5,5,5,15,15,15,15,15,30,30,30,30,30,50,50,50,50,50,100, %T A246839 100,100,100,100,130,130,130,130,130,165,165,165,165,165,205,205,205, %U A246839 205,205,250,250,250,250,250,350,350,350,350,350,405,405,405,405 %N A246839 Number of trailing zeros in A002109(n). %H A246839 Chai Wah Wu, <a href="/A246839/b246839.txt">Table of n, a(n) for n = 0..999</a> %F A246839 From _Michel Marcus_, Sep 14 2021: (Start) %F A246839 a(n) = A122840(A002109(n)), but also, %F A246839 a(n) = A112765(A002109(n)), see explanation in A002109; so %F A246839 a(n) = Sum_{i=1..n} i*v_5(i), where v_5(i) = A112765(i) is the exponent of the highest power of 5 dividing i. After a similar formula in A249152. (End) %t A246839 (n=#;k=0;While[Mod[n,10]==0,n=n/10;k++];k)&/@Hyperfactorial@Range[0,60] (* _Giorgos Kalogeropoulos_, Sep 14 2021 *) %o A246839 (Python) %o A246839 def a(n): %o A246839 s = 1 %o A246839 for k in range(n+1): %o A246839 s *= k**k %o A246839 i = 1 %o A246839 while not s % 10**i: %o A246839 i += 1 %o A246839 return i-1 %o A246839 n = 1 %o A246839 while n < 100: %o A246839 print(a(n),end=', ') %o A246839 n += 1 # _Derek Orr_, Sep 04 2014 %o A246839 (Python) %o A246839 from sympy import multiplicity %o A246839 A246839, p5 = [0,0,0,0,0], 0 %o A246839 for n in range(5,10**3,5): %o A246839 p5 += multiplicity(5,n)*n %o A246839 A246839.extend([p5]*5) %o A246839 # _Chai Wah Wu_, Sep 05 2014 %o A246839 (PARI) a(n) = sum(i=1, n, i*valuation(i, 5)); \\ _Michel Marcus_, Sep 14 2021 %Y A246839 Cf. A002109, A112765, A122840, A246817, A027868, A249152. %K A246839 nonn,base %O A246839 0,6 %A A246839 _Chai Wah Wu_, Sep 04 2014