A246849 Decimal expansion of 1-delta_0, where delta_0 is the Hall-Montgomery constant (A143301).
8, 2, 8, 4, 9, 9, 5, 0, 6, 8, 5, 8, 4, 6, 3, 9, 3, 4, 1, 3, 9, 5, 6, 0, 0, 2, 8, 4, 4, 4, 7, 8, 7, 8, 9, 0, 3, 7, 7, 7, 3, 7, 0, 9, 5, 7, 7, 0, 4, 4, 9, 1, 5, 8, 2, 8, 5, 7, 8, 8, 9, 0, 8, 1, 7, 6, 3, 0, 1, 3, 9, 4, 4, 0, 5, 6, 9, 1, 4, 2, 2, 0, 1, 2, 0, 2, 8, 8, 0, 1, 9, 1, 3, 1, 9, 9, 1, 8, 2, 6, 9
Offset: 0
Examples
0.82849950685846393413956002844478789037773709577...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 29.
- Michael Lugo, The number of cycles of specified normalized length in permutations, arXiv:0909.2909 [math.CO], 2009.
- Eric Weisstein's MathWorld, Hall-Montgomery Constant
Programs
-
Mathematica
Pi^2/6 + Log[1 + Sqrt[E]] - Log[1 + Sqrt[E]]^2 - 2*PolyLog[2, 1/(1 + Sqrt[E])] // RealDigits[#, 10, 101]& // First
-
PARI
Pi^2/6 + log(exp(1/2)+1) - log(exp(1/2)+1)^2 - 2*polylog(2, 1/(exp(1/2)+1)) \\ Charles R Greathouse IV, Sep 08 2014
-
Python
from mpmath import mp, log, exp, polylog, pi mp.dps=102 print([int(n) for n in list(str(pi**2/6 + log(exp(1/2)+1) - log(exp(1/2)+1)**2 - 2*polylog(2, 1/(exp(1/2)+1)))[2:-1])]) # Indranil Ghosh, Jul 04 2017
Formula
Pi^2/6 + log(1 + sqrt(e)) - log(1 + sqrt(e))^2 - 2*Li_2(1/(1 + sqrt(e))), where Li_2 is the dilogarithm function.
Comments