This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246863 #13 Feb 16 2025 08:33:23 %S A246863 1,3,2,0,2,2,0,1,2,2,3,4,0,0,2,0,4,2,0,2,0,0,1,4,0,2,6,1,2,0,0,4,2,0, %T A246863 0,2,4,2,2,0,0,0,0,4,0,1,4,2,0,4,2,0,3,2,2,0,4,0,2,2,0,4,0,2,2,2,0,0, %U A246863 2,0,2,4,0,0,2,0,3,4,0,0,2,4,2,0,0,3,4 %N A246863 Expansion of phi(x) * f(x^1, x^7) in powers of x where phi(), f() are Ramanujan theta functions. %C A246863 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A246863 G. C. Greubel, <a href="/A246863/b246863.txt">Table of n, a(n) for n = 0..1000</a> %H A246863 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A246863 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A246863 Euler transform of period 16 sequence [ 3, -4, 2, -1, 2, -3, 3, -2, 3, -3, 2, -1, 2, -4, 3, -2, ...]. %F A246863 Convolution of A000122 and A214263. %F A246863 a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = A246862(n). %F A246863 a(n) = A113407(2*n + 1) = - A226192(2*n + 1) = A008441(4*n + 2) = A134343(4*n + 2) = A116604(8*n + 4) = A125079(8*n + 4) = A129447(8*n + 4) = A138741(8*n + 4). %e A246863 G.f. = 1 + 3*x + 2*x^2 + 2*x^4 + 2*x^5 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + ... %e A246863 G.f. = q^9 + 3*q^25 + 2*q^41 + 2*q^73 + 2*q^89 + q^121 + 2*q^137 + 2*q^153 + ... %t A246863 a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^1, x^8] QPochhammer[ -x^7, x^8] QPochhammer[ x^8], {x, 0, n}]; %o A246863 (PARI) {a(n) = if( n<0, 0, issquare(16 * n + 9) + 2 * sum(i=1, sqrtint(n), issquare(16 * (n - i^2) + 9)))}; %Y A246863 Cf. A000122, A008441, A113407, A116604, A125079, A129447, A134343, A138741,A214263, A226192, A246862. %K A246863 nonn %O A246863 0,2 %A A246863 _Michael Somos_, Sep 05 2014