This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246867 #30 Nov 01 2018 19:36:46 %S A246867 1,2,3,5,6,7,10,11,14,15,13,21,22,30,17,26,33,35,42,19,34,39,55,66,70, %T A246867 23,38,51,65,77,78,105,110,29,46,57,85,91,102,130,154,165,210,31,58, %U A246867 69,95,114,119,143,170,182,195,231,330,37,62,87,115,133,138,187 %N A246867 Triangle T(n,k) in which n-th row lists in increasing order all partitions lambda of n into distinct parts encoded as Product_{i:lambda} prime(i); n>=0, 1<=k<=A000009(n). %C A246867 The concatenation of all rows (with offset 1) gives a permutation of the squarefree numbers A005117. The missing positive numbers are in A013929. %H A246867 Alois P. Heinz, <a href="/A246867/b246867.txt">Rows n = 0..42, flattened</a> %e A246867 The partitions of n=5 into distinct parts are {[5], [4,1], [3,2]}, encodings give {prime(5), prime(4)*prime(1), prime(3)*prime(2)} = {11, 7*2, 5*3} => row 5 = [11, 14, 15]. %e A246867 For n=0 the empty partition [] gives the empty product 1. %e A246867 Triangle T(n,k) begins: %e A246867 1; %e A246867 2; %e A246867 3; %e A246867 5, 6; %e A246867 7, 10; %e A246867 11, 14, 15; %e A246867 13, 21, 22, 30; %e A246867 17, 26, 33, 35, 42; %e A246867 19, 34, 39, 55, 66, 70; %e A246867 23, 38, 51, 65, 77, 78, 105, 110; %e A246867 29, 46, 57, 85, 91, 102, 130, 154, 165, 210; %e A246867 ... %e A246867 Corresponding triangle of strict integer partitions begins: %e A246867 0 %e A246867 (1) %e A246867 (2) %e A246867 (3) (21) %e A246867 (4) (31) %e A246867 (5) (41) (32) %e A246867 (6) (42) (51) (321) %e A246867 (7) (61) (52) (43) (421) %e A246867 (8) (71) (62) (53) (521) (431) %e A246867 (9) (81) (72) (63) (54) (621) (432) (531). - _Gus Wiseman_, Feb 23 2018 %p A246867 b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], [seq( %p A246867 map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..min(1, n/i))])) %p A246867 end: %p A246867 T:= n-> sort(b(n$2))[]: %p A246867 seq(T(n), n=0..14); %t A246867 b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Flatten[Table[Map[ #*Prime[i]^j&, b[n-i*j, i-1]], {j, 0, Min[1, n/i]}]]]]; T[n_] := Sort[b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 18 2016, after _Alois P. Heinz_ *) %Y A246867 Column k=1 gives: A008578(n+1). %Y A246867 Last elements of rows give: A246868. %Y A246867 Row sums give A147655. %Y A246867 Row lengths are: A000009. %Y A246867 Cf. A005117, A118462, A215366 (the same for all partitions), A258323, A299755, A299757, A299759. %K A246867 nonn,tabf,look %O A246867 0,2 %A A246867 _Alois P. Heinz_, Sep 05 2014