cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246869 Cube root of the smallest of the largest absolute values of parts of the partitions of n into four cubes, or -1 if no such partition exists.

This page as a plain text file.
%I A246869 #19 Nov 13 2020 02:32:46
%S A246869 0,1,1,1,1,2,2,2,2,2,2,2,3,11,2,2,2,2,2,3,3,3,16,2,2,2,3,3,3,3,3,52,2,
%T A246869 3,3,3,3,3,3,4,4,8,3,3,3,3,3,3,4,4,49,3,3,3,3,3,3,4,4,5,5,3,3,3,4,4,4,
%U A246869 4,5,5,3,4,4,3,4,4,11,5,8,4,3,3,3,4,4
%N A246869 Cube root of the smallest of the largest absolute values of parts of the partitions of n into four cubes, or -1 if no such partition exists.
%C A246869 It is not known if every integer can be written as the sum of four cubes, but it is true at least up to 1000 by computer search.
%C A246869 For each partition of n into four cubes (positive, negative, or zero) choose the largest part in absolute value. a(n) is the cube root of the smallest such largest part over all such partitions.
%C A246869 If there is no partition of n into four cubes, then a(n) = -1.
%C A246869 There is an interesting correlation with A332201 (sum of three cubes problem) whose nonzero absolute values coincide with a(n+1) up to n=30. - _M. F. Hasler_, Feb 10 2020
%H A246869 Alois P. Heinz, <a href="/A246869/b246869.txt">Table of n, a(n) for n = 0..20000</a>
%e A246869 The partition of 13 into 1^3+7^3+10^3+(-11)^3 has a part 11^3 in absolute value. Any other partition of 13 into four cubes has a part larger than 11^3 in absolute value. Thus a(13) = 11.
%p A246869 b:= proc(n, i, t) n=0 or t*i^3>=n and (b(n, i-1, t)
%p A246869       or b(n+i^3, i, t-1) or b(abs(n-i^3), i, t-1))
%p A246869     end:
%p A246869 a:= proc(n) local k; for k from 0
%p A246869       do if b(n, k, 4) then return k fi od
%p A246869     end:
%p A246869 seq(a(n), n=0..30);  # _Alois P. Heinz_, Sep 05 2014
%t A246869 b[n_, i_, t_] := b[n, i, t] = n == 0 || t i^3 >= n && (b[n, i - 1, t] || b[n + i^3, i, t - 1] || b[Abs[n - i^3], i, t - 1]);
%t A246869 a[n_] := Module[{k}, For[k = 0, True, k++, If[b[n, k, 4], Return[k]]]];
%t A246869 a /@ Range[0, 100] (* _Jean-François Alcover_, Nov 13 2020, after _Alois P. Heinz_ *)
%Y A246869 Cf. A243113.
%K A246869 nonn
%O A246869 0,6
%A A246869 _David S. Newman_, Sep 05 2014
%E A246869 More terms from _Alois P. Heinz_, Sep 05 2014