cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246879 Decimal expansion of the constant W(1) appearing in the asymptotic expression of the probability that two independent, random n-permutations have the same cycle type as W(1)/n^2.

This page as a plain text file.
%I A246879 #44 Dec 28 2020 07:30:29
%S A246879 4,2,6,3,4,0,3,5,1,4,1,5,2,6,6,9,7,7,8,2,9,8,9,3,5,0,5,5,1,6,6,1,9,6,
%T A246879 6,9,0,5,3,5,0,8,1,8,1,7,4,7,9,4,1,1,6,0,5,0,6,7,7,1,2,5,6,3,2,0,3,7,
%U A246879 1,9,1,4,5,8,2,7,8,5,7,3,4,6,1,7,2,3,5,6,1,3,4,4,8,1,3,2,9,8,7,7,3,0,6,3,5
%N A246879 Decimal expansion of the constant W(1) appearing in the asymptotic expression of the probability that two independent, random n-permutations have the same cycle type as W(1)/n^2.
%C A246879 See A087132.
%H A246879 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 42.
%H A246879 Ph. Flajolet, É. Fusy, X. Gourdon, D. Panario, N. Pouyanne, <a href="http://arxiv.org/abs/math/0606370">A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics</a>, arXiv:math/0606370 [math.CO]
%F A246879 prod_{k>=1} I_0(2/k), where I_0 is the zeroth modified Bessel function.
%e A246879 4.2634035141526697782989350551661966905350818174794...
%p A246879 evalf(product(BesselI(0,2/k), k=1..infinity), 100) # _Vaclav Kotesovec_, Sep 17 2014
%t A246879 digits = 50; m0 = 1000; dm = 1000; tail[m_] := PolyGamma[1, m] - (1/24)*PolyGamma[3, m] + PolyGamma[5, m]/1080 - (11*PolyGamma[7, m])/967680 + (19*PolyGamma[9, m])/217728000 - (43*PolyGamma[11, m])/94058496000; Clear[f]; f[m_] := f[m] = Sum[Log[BesselI[0, 2/k]], {k, 1, m - 1}] + tail[m] // N[#, digits + 5] &; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2] != RealDigits[f[m - dm], 10, digits + 2], Print["f(", m, ") = ", f[m]]; m = m + dm];RealDigits[Exp[f[m]], 10, digits] // First
%Y A246879 Cf. A087132.
%K A246879 nonn,cons
%O A246879 1,1
%A A246879 _Jean-François Alcover_, Sep 08 2014
%E A246879 More terms from _Vaclav Kotesovec_, Sep 17 2014