cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A246886 Number of length n+4 0..2 arrays with some pair in every consecutive five terms totalling exactly 2.

Original entry on oeis.org

231, 673, 1961, 5711, 16621, 48393, 140893, 410197, 1194243, 3476929, 10122747, 29471409, 85803183, 249807769, 727291431, 2117439451, 6164722475, 17947999987, 52253885667, 152132191293, 442918327175, 1289514355131, 3754297734035
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Comments

Column 2 of A246892

Examples

			Some solutions for n=6
..1....1....1....2....0....0....1....2....0....0....1....2....2....1....1....0
..2....1....2....2....0....1....1....2....2....0....1....1....0....0....0....1
..2....1....1....1....0....0....2....0....1....2....2....2....1....2....1....1
..0....1....2....1....2....0....2....0....2....1....2....2....0....1....1....2
..0....2....1....2....0....2....0....1....2....1....1....1....0....2....0....0
..0....1....2....2....0....1....1....2....0....1....1....1....1....1....0....2
..1....2....0....2....2....0....0....2....2....0....2....0....1....2....2....0
..2....1....2....0....1....2....1....0....0....2....0....0....0....2....1....2
..0....0....2....1....0....0....1....2....2....1....0....1....0....1....1....0
..1....1....1....0....0....1....2....1....2....1....2....1....0....1....1....2
		

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) +a(n-3) +3*a(n-4) -2*a(n-6) -2*a(n-7) -3*a(n-8) -3*a(n-9) +a(n-11) +a(n-13) +a(n-14)

A246887 Number of length n+4 0..3 arrays with some pair in every consecutive five terms totalling exactly 3.

Original entry on oeis.org

900, 3364, 12544, 46656, 173056, 643204, 2390116, 8880400, 32993536, 122589184, 455480964, 1692335044, 6287855616, 23362511104, 86803301376, 322517224836, 1198311166276, 4452319442704, 16542571369536, 61463843852544
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Comments

Column 3 of A246892

Examples

			Some solutions for n=5
..0....1....0....0....2....2....0....1....1....0....0....2....1....2....0....2
..3....2....1....2....3....3....0....0....0....0....2....3....0....0....3....1
..0....2....1....2....2....1....0....2....0....1....3....0....0....3....3....1
..3....1....2....3....3....0....3....0....0....3....2....0....0....2....1....2
..1....2....1....2....0....2....1....2....2....2....1....1....3....1....1....0
..1....0....2....0....0....2....0....1....1....3....3....3....0....3....0....1
..2....2....2....1....3....1....2....1....1....1....0....2....2....1....3....2
..0....1....1....3....3....1....0....2....1....3....2....3....1....0....0....0
..3....3....3....2....3....3....1....1....3....2....1....3....1....1....1....2
		

Formula

Empirical: a(n) = 2*a(n-1) +4*a(n-2) +6*a(n-3) +12*a(n-4) -4*a(n-5) -6*a(n-6) -2*a(n-8) +a(n-10)

A246888 Number of length n+4 0..4 arrays with some pair in every consecutive five terms totalling exactly 4.

Original entry on oeis.org

2701, 12481, 57585, 264981, 1216081, 5592169, 25710385, 118192273, 543322645, 2497751105, 11482493485, 52786380721, 242665353541, 1115563238521, 5128382983861, 23575813154485, 108380944031221, 498240685840957
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Comments

Column 4 of A246892

Examples

			Some solutions for n=3
..4....4....4....1....4....4....1....4....4....1....4....4....0....3....3....2
..3....4....3....0....4....3....1....1....4....1....3....4....2....1....2....3
..2....4....1....1....3....0....4....4....2....4....4....0....0....2....3....2
..2....3....4....2....0....4....3....2....1....3....2....1....4....4....1....4
..3....0....0....2....4....2....1....2....2....4....1....0....3....1....3....1
..0....0....3....2....0....0....3....3....3....2....1....4....0....2....4....0
..3....2....0....4....3....0....3....4....1....0....0....0....2....1....1....4
		

Formula

Empirical: a(n) = 3*a(n-1) +6*a(n-2) +5*a(n-3) +17*a(n-4) -16*a(n-5) -117*a(n-6) -174*a(n-7) -295*a(n-8) -478*a(n-9) +437*a(n-10) +1237*a(n-11) +663*a(n-12) +1581*a(n-13) +2542*a(n-14) -1551*a(n-15) -2164*a(n-16) -1754*a(n-17) -1473*a(n-18) +623*a(n-19) +1190*a(n-20) +651*a(n-21) +184*a(n-22) -263*a(n-23) -141*a(n-24) -109*a(n-25) -11*a(n-26) +46*a(n-27) +9*a(n-28) +10*a(n-29) +2*a(n-30) -3*a(n-31)

A246889 Number of length n+4 0..5 arrays with some pair in every consecutive five terms totalling exactly 5.

Original entry on oeis.org

6210, 33294, 177648, 942216, 4971120, 26346486, 139555230, 738947844, 3912529200, 20719113168, 109715387730, 580975750422, 3076449953280, 16290853187184, 86265445976256, 456803864051526, 2418927144356598
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Comments

Column 5 of A246892

Examples

			Some solutions for n=3
..4....1....4....4....1....3....4....0....4....3....1....3....3....0....1....1
..4....0....4....3....4....4....1....5....1....5....0....2....4....5....3....0
..1....4....0....0....3....0....4....5....3....4....4....0....5....0....4....0
..1....1....1....4....2....5....5....5....0....0....1....1....1....5....5....4
..1....0....5....5....2....2....0....3....5....4....3....3....4....3....1....2
..5....4....0....4....5....4....4....2....5....5....3....5....2....2....4....1
..0....1....4....0....5....5....2....3....5....3....2....1....3....2....3....4
		

Formula

Empirical: a(n) = 3*a(n-1) +7*a(n-2) +19*a(n-3) +53*a(n-4) -40*a(n-5) -36*a(n-6) -24*a(n-7) -64*a(n-8) +16*a(n-9) +29*a(n-10) -3*a(n-11) +5*a(n-12) +a(n-13) -a(n-14)

A246890 Number of length n+4 0..6 arrays with some pair in every consecutive five terms totalling exactly 6.

Original entry on oeis.org

12931, 79345, 484297, 2934691, 17677453, 107053441, 647845357, 3918872917, 23704560247, 143411404177, 867589027255, 5248533086737, 31751477775283, 192084498199057, 1162035937634059, 7029860030730799, 42527901983843695
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Comments

Column 6 of A246892

Examples

			Some solutions for n=2
..3....2....0....1....3....5....4....4....3....5....6....4....1....3....4....4
..0....2....6....2....2....2....0....6....4....5....0....0....4....3....6....5
..6....2....0....6....5....6....2....0....3....2....4....4....3....3....0....2
..1....1....2....4....6....4....1....4....0....1....2....2....2....4....4....4
..0....5....0....6....0....6....5....3....5....1....3....4....1....4....2....0
..6....3....2....1....2....1....1....3....6....1....5....6....1....1....3....0
		

Formula

Empirical: a(n) = 4*a(n-1) +10*a(n-2) +15*a(n-3) +55*a(n-4) -122*a(n-5) -916*a(n-6) -1894*a(n-7) -4648*a(n-8) -9946*a(n-9) +15406*a(n-10) +47913*a(n-11) +39431*a(n-12) +132641*a(n-13) +302885*a(n-14) -291986*a(n-15) -367776*a(n-16) -594557*a(n-17) -536195*a(n-18) +186679*a(n-19) +412560*a(n-20) +695225*a(n-21) +363035*a(n-22) -197211*a(n-23) -184244*a(n-24) -266741*a(n-25) -67874*a(n-26) +101347*a(n-27) +30806*a(n-28) +35298*a(n-29) +1493*a(n-30) -14011*a(n-31) -856*a(n-32) -1905*a(n-33) -259*a(n-34) +427*a(n-35) +47*a(n-36) +37*a(n-37) +9*a(n-38) -5*a(n-39)

A246891 Number of length n+4 0..7 arrays with some pair in every consecutive five terms totalling exactly 7.

Original entry on oeis.org

23400, 159688, 1079680, 7216512, 47799488, 319477960, 2132283592, 14219886016, 94826520320, 632600369216, 4219646774184, 28145459043464, 187735748042496, 1252250358585088, 8352796888611456, 55715038868965512, 371632331032444552
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Comments

Column 7 of A246892

Examples

			Some solutions for n=2
..4....0....0....4....1....5....6....1....5....6....2....4....2....2....4....4
..7....3....7....7....2....2....4....6....6....3....2....5....2....7....7....1
..6....6....3....3....7....3....1....1....2....5....1....3....5....3....3....1
..0....4....5....0....6....3....7....6....7....5....3....1....1....4....5....0
..7....7....0....4....1....4....6....1....0....2....6....6....1....6....4....7
..5....7....4....4....2....6....4....1....7....1....0....6....1....3....6....2
		

Formula

Empirical: a(n) = 4*a(n-1) +10*a(n-2) +38*a(n-3) +132*a(n-4) -233*a(n-5) -124*a(n-6) -48*a(n-7) -152*a(n-8) +232*a(n-9) +97*a(n-10) -80*a(n-11) +14*a(n-12) -6*a(n-13) -4*a(n-14) +a(n-15)

A246893 Number of length 1+4 0..n arrays with some pair in every consecutive five terms totalling exactly n.

Original entry on oeis.org

30, 231, 900, 2701, 6210, 12931, 23400, 40281, 63750, 97951, 142380, 202981, 278250, 376251, 494160, 642481, 816750, 1030231, 1276500, 1571901, 1907730, 2303731, 2748600, 3265801, 3841110, 4502031, 5231100, 6060181, 6968250, 7991851, 9106080
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Examples

			Some solutions for n=6:
..5....5....5....4....6....3....4....5....5....3....3....0....3....3....3....1
..1....5....3....1....2....5....1....2....2....3....4....4....0....6....3....6
..3....3....3....2....3....6....5....5....0....6....1....4....1....3....1....5
..2....1....1....2....4....0....0....5....6....0....4....0....5....1....3....2
..3....4....4....1....1....2....6....4....6....0....2....6....4....2....2....2
		

Crossrefs

Row 1 of A246892.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
Conjectures from Colin Barker, Nov 07 2018: (Start)
G.f.: x*(30 + 171*x + 378*x^2 + 619*x^3 + 394*x^4 + 329*x^5 - 2*x^6 + x^7) / ((1 - x)^5*(1 + x)^3).
a(n) = 1 - 5*n + 30*n^2 - 5*n^3 + 10*n^4 for n even.
a(n) = -15 + 20*n + 20*n^2 - 5*n^3 + 10*n^4 for n odd.
(End)

A246894 Number of length 2+4 0..n arrays with some pair in every consecutive five terms totalling exactly n.

Original entry on oeis.org

58, 673, 3364, 12481, 33294, 79345, 159688, 303169, 521890, 866881, 1351788, 2057473, 2996854, 4289041, 5943184, 8125825, 10838538, 14305249, 18515380, 23760961, 30013918, 37645873, 46605144, 57355201, 69813874, 84549505
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Examples

			Some solutions for n=6:
..4....4....0....0....5....2....5....4....0....2....4....4....5....4....4....3
..2....4....3....0....5....3....3....5....6....3....6....0....5....2....4....6
..4....5....4....3....2....4....2....0....6....5....1....1....4....3....6....5
..2....0....3....6....5....2....3....0....3....5....2....0....1....2....5....1
..6....1....6....2....1....2....4....1....3....1....4....5....0....1....2....3
..0....1....4....4....5....4....3....3....3....1....5....6....1....4....0....4
		

Crossrefs

Row 2 of A246892.

Formula

Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 8*a(n-3) - 2*a(n-4) + 12*a(n-5) - 2*a(n-6) - 8*a(n-7) + 3*a(n-8) + 2*a(n-9) - a(n-10).
Conjectures from Colin Barker, Nov 07 2018: (Start)
G.f.: x*(58 + 557*x + 1844*x^2 + 4198*x^3 + 3740*x^4 + 2876*x^5 - 268*x^6 - 1486*x^7 + 2*x^8 - x^9) / ((1 - x)^6*(1 + x)^4).
a(n) = 1 - 72*n + 146*n^2 - 57*n^3 + 31*n^4 + 6*n^5 for n even.
a(n) = -101 + 84*n + 99*n^2 - 61*n^3 + 31*n^4 + 6*n^5 for n odd.
(End)

A246895 Number of length 3+4 0..n arrays with some pair in every consecutive five terms totalling exactly n.

Original entry on oeis.org

112, 1961, 12544, 57585, 177648, 484297, 1079680, 2256929, 4207600, 7537641, 12554112, 20344081, 31352944, 47355785, 68954368, 98858817, 137838960, 189828649, 255769600, 341151281, 447081712, 580982601, 744111744, 946245985
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Comments

Row 3 of A246892

Examples

			Some solutions for n=5
..1....0....3....0....3....1....1....1....1....3....3....1....1....0....1....0
..0....3....0....4....2....0....3....3....3....1....5....0....3....2....1....4
..1....3....4....3....0....5....2....1....2....3....2....4....2....4....1....0
..1....2....1....1....3....4....0....2....0....2....1....0....1....2....2....0
..4....0....1....5....4....2....2....3....2....2....3....1....5....1....4....5
..3....0....5....2....5....1....1....3....1....4....4....4....1....3....2....4
..3....1....1....5....4....5....5....2....4....4....5....3....3....4....0....4
		

Formula

Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12)

A246896 Number of length 4+4 0..n arrays with some pair in every consecutive five terms totalling exactly n.

Original entry on oeis.org

216, 5711, 46656, 264981, 942216, 2934691, 7216512, 16571465, 33296760, 64134231, 113503296, 195133981, 316514856, 502575851, 764948736, 1145338641, 1660700952, 2376636895, 3316691520, 4579210661, 6195659976, 8307888051, 10956656256
Offset: 1

Views

Author

R. H. Hardin, Sep 06 2014

Keywords

Comments

Row 4 of A246892

Examples

			Some solutions for n=3
..2....2....3....2....2....3....0....3....3....1....2....3....2....1....3....1
..3....0....3....2....2....0....1....3....2....0....3....2....0....3....3....3
..2....0....0....1....1....0....1....0....2....3....0....3....2....1....1....0
..2....1....1....1....0....3....2....2....2....0....0....1....0....2....2....1
..1....0....3....3....0....0....2....1....0....0....1....2....1....1....0....0
..2....2....3....1....2....2....3....2....3....0....0....1....3....1....1....3
..2....1....2....2....3....1....3....2....2....3....3....3....1....1....3....1
..0....2....2....1....0....1....1....1....0....3....1....0....1....1....0....0
		

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2) -14*a(n-3) +5*a(n-4) +25*a(n-5) -20*a(n-6) -20*a(n-7) +25*a(n-8) +5*a(n-9) -14*a(n-10) +2*a(n-11) +3*a(n-12) -a(n-13)
Showing 1-10 of 13 results. Next