A246894 Number of length 2+4 0..n arrays with some pair in every consecutive five terms totalling exactly n.
58, 673, 3364, 12481, 33294, 79345, 159688, 303169, 521890, 866881, 1351788, 2057473, 2996854, 4289041, 5943184, 8125825, 10838538, 14305249, 18515380, 23760961, 30013918, 37645873, 46605144, 57355201, 69813874, 84549505
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4....4....0....0....5....2....5....4....0....2....4....4....5....4....4....3 ..2....4....3....0....5....3....3....5....6....3....6....0....5....2....4....6 ..4....5....4....3....2....4....2....0....6....5....1....1....4....3....6....5 ..2....0....3....6....5....2....3....0....3....5....2....0....1....2....5....1 ..6....1....6....2....1....2....4....1....3....1....4....5....0....1....2....3 ..0....1....4....4....5....4....3....3....3....1....5....6....1....4....0....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A246892.
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 8*a(n-3) - 2*a(n-4) + 12*a(n-5) - 2*a(n-6) - 8*a(n-7) + 3*a(n-8) + 2*a(n-9) - a(n-10).
Conjectures from Colin Barker, Nov 07 2018: (Start)
G.f.: x*(58 + 557*x + 1844*x^2 + 4198*x^3 + 3740*x^4 + 2876*x^5 - 268*x^6 - 1486*x^7 + 2*x^8 - x^9) / ((1 - x)^6*(1 + x)^4).
a(n) = 1 - 72*n + 146*n^2 - 57*n^3 + 31*n^4 + 6*n^5 for n even.
a(n) = -101 + 84*n + 99*n^2 - 61*n^3 + 31*n^4 + 6*n^5 for n odd.
(End)