This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246904 #16 Dec 16 2024 14:33:06 %S A246904 2,5,2,3,5,2,5,10,85,2,3,5,6,30,221,2,5,13,65,145,290,533,2813,2,3,5, %T A246904 10,42,85,87,105,210,455,1365,1517,7565,2,5,29,58,74,149,185,442,565, %U A246904 901,2026,2117,2210,3973,10001,11026,16133,18229,2,3,5,6,26,30 %N A246904 Irregular triangular array: every periodic simple continued fraction CF represents a quadratic irrational (c + f*sqrt(d))/b, where b,c,f,d are integers and d is squarefree. Row n of this array shows the distinct values of d as CF ranges through the periodic continued fractions having period an n-tuple of 1s and 2s. %C A246904 Is every squarefree positive integer in this array? %e A246904 First 5 rows: %e A246904 2 ... 5 %e A246904 2 ... 3 ... 5 %e A246904 2 ... 5 ... 10 .. 85 %e A246904 2 ... 3 ... 5 ... 6 ... 30 ... 221 %e A246904 2 ... 5 ... 13 .. 65 .. 145 .. 290 .. 533 .. 2813 %e A246904 The following list shows for n = 3 the 2^n purely periodic continued fractions, each followed by the number r it represents, the minimal polynomial a*x^2 + b*x + c of r, the discriminant, D = b^2 - 4*a*c, and the squarefree factor, d, of D. %e A246904 [(1,1,1)] = (1+sqrt(5))/2, -1 - x + x^2, D = 5 %e A246904 [(1,1,2)] = sqrt(5/2), -5 + 2 x^2, D = 40 %e A246904 [(1,2,1)] = (2 + sqrt(10))/3, -2 - 4 x + 3 x^2, D = 40 %e A246904 [(2,1,1)] = (1 + sqrt(10))/3, -3 - 2 x + 3 x^2, D = 40 %e A246904 [(1,2,2)] = (1 + sqrt(85))/6, -7 - x + 3 x^2, D = 85 %e A246904 [(2,1,2)] = (-1 + sqrt(85))/6, -7 + x + 3 x^2, D = 85 %e A246904 [(2,2,1)] = (5 + sqrt(85))/10, -3 - 5 x + 5 x^2, D = 85 %e A246904 [(2,2,2)] = sqrt(2), -2 + x^2, D = 8 %e A246904 The distinct values of d are 2, 5, 10, 85, as in row 3. %t A246904 z = 6; %t A246904 t[n_] := t[n] = Map[FromContinuedFraction[{1, #}] &, Tuples[{1, 2}, n]] %t A246904 u[n_] := u[n] = Table[MinimalPolynomial[t[k], x], {k, 1, n}] %t A246904 d = Discriminant[u[z], x]; v[n_] := Table[{p, m} = %t A246904 Transpose[FactorInteger[k]]; Times @@ (p^Mod[m, 2]), {k, d[[n]]}]; %t A246904 w = Table[Union[Table[v[n], {n, 1, z}][[n]]], {n, 1, z}]; %t A246904 TableForm[w] (* A246904 array *) %t A246904 Flatten[w] (* A246904 sequence *) %Y A246904 Cf. A246903, A246905. %K A246904 nonn,tabf,easy %O A246904 1,1 %A A246904 _Clark Kimberling_, Sep 06 2014 %E A246904 Edited by _Clark Kimberling_, Dec 05 2024