cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246916 Sum of the cumulative sums of all the permutations of divisors of number n.

This page as a plain text file.
%I A246916 #23 Aug 08 2025 15:04:17
%S A246916 1,9,12,84,18,720,24,900,156,1080,36,70560,42,1440,1440,11160,54,
%T A246916 98280,60,105840,1920,2160,72,10886400,372,2520,2400,141120,90,
%U A246916 13063680,96,158760,2880,3240,2880,165110400,114,3600,3360,16329600,126,17418240,132,211680
%N A246916 Sum of the cumulative sums of all the permutations of divisors of number n.
%C A246916 For number n there are A130674(n) = tau(n)! = A000005(n)! permutations of divisors of number n and the same number of their cumulative sums. This sequence is sequence of sums of these sums.
%C A246916 Sequences A064945 and A064944 are sequences of minimal and maximal values of cumulative sums of all the permutations of divisors of number n.
%H A246916 Antti Karttunen, <a href="/A246916/b246916.txt">Table of n, a(n) for n = 1..10000</a>
%F A246916 a(n) = A130674(n) * (A064945(n) + A064944(n)) / 2 = (tau(n))! * ((Sum_{i=1..tau(n)} (tau(n) - i + 1)*d_i) + (Sum_{i=1..tau(n)} i*d_i)) / 2; where {d_i}, i = 1..tau(n) is the increasing sequence of divisors of n.
%F A246916 a(n) = sigma(n) * A001710(tau(n) + 1) = A000203(n) * A001710(A000005(n)+1).
%e A246916 For n = 4; there are tau(4)! = 6 permutations of divisors of number 4: (1, 2, 4); (1, 4, 2); (2, 1, 4); (2, 4, 1); (4, 1, 2); (4, 2, 1). Sum of their cumulative sums = 11 + 13 + 12 + 15 + 16 + 17 = 84.
%t A246916 A246916[n_] := DivisorSigma[1, n]*(DivisorSigma[0, n] + 1)!/2;
%t A246916 Array[A246916, 50] (* _Paolo Xausa_, Aug 08 2025 *)
%o A246916 (Magma) [SumOfDivisors(n)*(Order(AlternatingGroup(NumberOfDivisors(n)+1))): n in [1..100]];
%o A246916 (PARI)
%o A246916 A001710(n) = if( n<2, n>=0, n!/2);
%o A246916 A246916(n) = (sigma(n) * A001710(numdiv(n) + 1)); \\ _Antti Karttunen_, Sep 10 2017
%Y A246916 Cf. A000005, A000203, A001710, A064945, A064944, A130674.
%K A246916 nonn
%O A246916 1,2
%A A246916 _Jaroslav Krizek_, Sep 12 2014