cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246919 The length of the longest nontrivial integral cevian of an equilateral triangle of side n that divides an edge into two integral parts, or 0 if no such cevian exists.

This page as a plain text file.
%I A246919 #26 Dec 10 2016 19:35:35
%S A246919 0,0,7,0,19,14,37,13,61,38,91,28,127,74,169,49,217,122,271,76,331,182,
%T A246919 397,109,469,254,547,148,631,338,721,193,817,434,919,244,1027,542,
%U A246919 1141,301,1261,662,1387,364,1519,794,1657,433,1801,938,1951,508,2107
%N A246919 The length of the longest nontrivial integral cevian of an equilateral triangle of side n that divides an edge into two integral parts, or 0 if no such cevian exists.
%C A246919 A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).
%C A246919 A nontrivial cevian is one that does not coincide with a side of the triangle.
%C A246919 For an equilateral triangle of side n, the lengths of its cevians are the values of y in the solutions to x^2-y^2-n*x+n^2=0.
%H A246919 Colin Barker, <a href="/A246919/b246919.txt">Table of n, a(n) for n = 1..10000</a>
%H A246919 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cevian">Cevian</a>
%F A246919 Conjectures from _Colin Barker_, Jun 06 2016: (Start)
%F A246919 a(n) = 3*a(n-4)-3*a(n-8)+a(n-12) for n>14.
%F A246919 G.f.: x^3*(7 +19*x^2 +14*x^3 +16*x^4 +13*x^5 +4*x^6 -4*x^7 +x^8 -11*x^9 +x^10 +2*x^11 +4*x^13) / ((1 -x)^3*(1 +x)^3*(1 +x^2)^3).
%F A246919 (End)
%t A246919 Rest@ CoefficientList[Series[x^3 (7 + 19 x^2 + 14 x^3 + 16 x^4 + 13 x^5 + 4 x^6 - 4 x^7 + x^8 - 11 x^9 + x^10 + 2 x^11 + 4 x^13)/((1 - x)^3 (1 + x)^3 (1 + x^2)^3), {x, 0, 53}], x] (* _Michael De Vlieger_, Jun 06 2016 *)
%o A246919 (PARI)
%o A246919 \\ Returns the length of the longest integral cevian of an equilateral triangle of side n.
%o A246919 longest(n) = {
%o A246919   s=[];
%o A246919   m=12*n^2;
%o A246919   fordiv(m, f,
%o A246919     g=m\f;
%o A246919     if(f<=g && (f+g)%2==0,
%o A246919       x=(f+g)\2;
%o A246919       if(x%4==0,
%o A246919         s=concat(s, x\4)
%o A246919       )
%o A246919     )
%o A246919   );
%o A246919   if(#s==1, return(0));
%o A246919   for(i=1, #s, if(s[i]!=n, return(s[i])))
%o A246919 }
%o A246919 vector(100, n, longest(n))
%Y A246919 Cf. A229839, A246918, A246920.
%K A246919 nonn
%O A246919 1,3
%A A246919 _Colin Barker_, Sep 07 2014