This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246919 #26 Dec 10 2016 19:35:35 %S A246919 0,0,7,0,19,14,37,13,61,38,91,28,127,74,169,49,217,122,271,76,331,182, %T A246919 397,109,469,254,547,148,631,338,721,193,817,434,919,244,1027,542, %U A246919 1141,301,1261,662,1387,364,1519,794,1657,433,1801,938,1951,508,2107 %N A246919 The length of the longest nontrivial integral cevian of an equilateral triangle of side n that divides an edge into two integral parts, or 0 if no such cevian exists. %C A246919 A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). %C A246919 A nontrivial cevian is one that does not coincide with a side of the triangle. %C A246919 For an equilateral triangle of side n, the lengths of its cevians are the values of y in the solutions to x^2-y^2-n*x+n^2=0. %H A246919 Colin Barker, <a href="/A246919/b246919.txt">Table of n, a(n) for n = 1..10000</a> %H A246919 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cevian">Cevian</a> %F A246919 Conjectures from _Colin Barker_, Jun 06 2016: (Start) %F A246919 a(n) = 3*a(n-4)-3*a(n-8)+a(n-12) for n>14. %F A246919 G.f.: x^3*(7 +19*x^2 +14*x^3 +16*x^4 +13*x^5 +4*x^6 -4*x^7 +x^8 -11*x^9 +x^10 +2*x^11 +4*x^13) / ((1 -x)^3*(1 +x)^3*(1 +x^2)^3). %F A246919 (End) %t A246919 Rest@ CoefficientList[Series[x^3 (7 + 19 x^2 + 14 x^3 + 16 x^4 + 13 x^5 + 4 x^6 - 4 x^7 + x^8 - 11 x^9 + x^10 + 2 x^11 + 4 x^13)/((1 - x)^3 (1 + x)^3 (1 + x^2)^3), {x, 0, 53}], x] (* _Michael De Vlieger_, Jun 06 2016 *) %o A246919 (PARI) %o A246919 \\ Returns the length of the longest integral cevian of an equilateral triangle of side n. %o A246919 longest(n) = { %o A246919 s=[]; %o A246919 m=12*n^2; %o A246919 fordiv(m, f, %o A246919 g=m\f; %o A246919 if(f<=g && (f+g)%2==0, %o A246919 x=(f+g)\2; %o A246919 if(x%4==0, %o A246919 s=concat(s, x\4) %o A246919 ) %o A246919 ) %o A246919 ); %o A246919 if(#s==1, return(0)); %o A246919 for(i=1, #s, if(s[i]!=n, return(s[i]))) %o A246919 } %o A246919 vector(100, n, longest(n)) %Y A246919 Cf. A229839, A246918, A246920. %K A246919 nonn %O A246919 1,3 %A A246919 _Colin Barker_, Sep 07 2014