This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246920 #19 Dec 10 2016 19:35:57 %S A246920 0,0,1,0,2,1,2,2,2,2,2,1,2,2,5,4,2,2,2,2,5,2,2,5,4,2,3,2,2,5,2,6,5,2, %T A246920 8,2,2,2,5,8,2,5,2,2,8,2,2,9,4,4,5,2,2,3,8,8,5,2,2,5,2,2,8,8,8,5,2,2, %U A246920 5,8,2,8,2,2,9,2,8,5,2,14,4,2,2,5,8,2 %N A246920 The number of distinct lengths of nontrivial integral cevians of an equilateral triangle of side n that divide an edge into two integral parts. %C A246920 A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). %C A246920 A nontrivial cevian is one that does not coincide with a side of the triangle. %C A246920 For an equilateral triangle of side n, the lengths of its cevians are the values of y in the solutions to x^2-y^2-n*x+n^2=0. %H A246920 Colin Barker, <a href="/A246920/b246920.txt">Table of n, a(n) for n = 1..10000</a> %H A246920 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cevian">Cevian</a> %e A246920 a(15) = 5 because cevians of an equilateral triangle of side 15 have length 13, 21, 35, 57 or 169. %o A246920 (PARI) %o A246920 \\ Returns the number of cevians of an equilateral triangle of side n. %o A246920 count(n) = { %o A246920 s=[]; %o A246920 n=12*n^2; %o A246920 fordiv(n, f, %o A246920 g=n\f; %o A246920 if(f<=g && (f+g)%2==0, %o A246920 x=(f+g)\2; %o A246920 if(x%4==0, %o A246920 s=concat(s, x\4) %o A246920 ) %o A246920 ) %o A246920 ); %o A246920 Colrev(s)~ %o A246920 } %o A246920 vector(100, n, #count(n)-1) %Y A246920 Cf. A229839, A246918, A246919. %K A246920 nonn %O A246920 1,5 %A A246920 _Colin Barker_, Sep 07 2014