cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246920 The number of distinct lengths of nontrivial integral cevians of an equilateral triangle of side n that divide an edge into two integral parts.

This page as a plain text file.
%I A246920 #19 Dec 10 2016 19:35:57
%S A246920 0,0,1,0,2,1,2,2,2,2,2,1,2,2,5,4,2,2,2,2,5,2,2,5,4,2,3,2,2,5,2,6,5,2,
%T A246920 8,2,2,2,5,8,2,5,2,2,8,2,2,9,4,4,5,2,2,3,8,8,5,2,2,5,2,2,8,8,8,5,2,2,
%U A246920 5,8,2,8,2,2,9,2,8,5,2,14,4,2,2,5,8,2
%N A246920 The number of distinct lengths of nontrivial integral cevians of an equilateral triangle of side n that divide an edge into two integral parts.
%C A246920 A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).
%C A246920 A nontrivial cevian is one that does not coincide with a side of the triangle.
%C A246920 For an equilateral triangle of side n, the lengths of its cevians are the values of y in the solutions to x^2-y^2-n*x+n^2=0.
%H A246920 Colin Barker, <a href="/A246920/b246920.txt">Table of n, a(n) for n = 1..10000</a>
%H A246920 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cevian">Cevian</a>
%e A246920 a(15) = 5 because cevians of an equilateral triangle of side 15 have length 13, 21, 35, 57 or 169.
%o A246920 (PARI)
%o A246920 \\ Returns the number of cevians of an equilateral triangle of side n.
%o A246920 count(n) = {
%o A246920   s=[];
%o A246920   n=12*n^2;
%o A246920   fordiv(n, f,
%o A246920     g=n\f;
%o A246920     if(f<=g && (f+g)%2==0,
%o A246920       x=(f+g)\2;
%o A246920       if(x%4==0,
%o A246920         s=concat(s, x\4)
%o A246920       )
%o A246920     )
%o A246920   );
%o A246920   Colrev(s)~
%o A246920 }
%o A246920 vector(100, n, #count(n)-1)
%Y A246920 Cf. A229839, A246918, A246919.
%K A246920 nonn
%O A246920 1,5
%A A246920 _Colin Barker_, Sep 07 2014