This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246923 #21 Jun 12 2023 09:10:02 %S A246923 1,25,1089,60025,3690241,241025625,16359689025,1140463805625, %T A246923 81081830657025,5852177325225625,427465780890020929, %U A246923 31528177440967935225,2344153069158724611841,175473167541934734763225,13211212029033949825064769,999630716942846408773325625 %N A246923 Expansion of g.f.: 1 / AGM(1-9*x, sqrt((1-x)*(1-81*x))). %C A246923 In general, the g.f. of the squares of coefficients in g.f. 1/sqrt((1-p*x)*(1-q*x)) is given by %C A246923 1/AGM(1-p*q*x, sqrt((1-p^2*x)*(1-q^2*x))) = Sum_{n>=0} x^n*( Sum_{k=0..n} p^(n-k)*((q-p)/4)^k*C(n,k)*C(2*k,k) )^2, %C A246923 and consists of integer coefficients when 4|(q-p). %C A246923 Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) is the arithmetic-geometric mean. %H A246923 Seiichi Manyama, <a href="/A246923/b246923.txt">Table of n, a(n) for n = 0..525</a> %F A246923 a(n) = A084771(n)^2 = ( Sum_{k=0..n} 2^k*C(n,k)*C(2*k,k) )^2. %F A246923 G.f.: 1 / AGM((1-x)*(1+9*x), (1+x)*(1-9*x)) = Sum_{n>=0} a(n)*x^(2*n). %F A246923 a(n) ~ 3^(4*n+2) / (8*Pi*n). - _Vaclav Kotesovec_, Sep 27 2019 %F A246923 a(n) = 9^n * ( LegendreP(n, 5/3) )^2. - _G. C. Greubel_, May 30 2023 %e A246923 G.f.: A(x) = 1 + 25*x + 1089*x^2 + 60025*x^3 + 3690241*x^4 + 241025625*x^5 +... %e A246923 where the square-root of each term yields A084771: %e A246923 [1, 5, 33, 245, 1921, 15525, 127905, 1067925, ...], %e A246923 the g.f. of which is 1/sqrt((1-x)*(1-9*x)). %t A246923 a[n_] := Sum[2^k * Binomial[n, k] * Binomial[2k, k], {k, 0, n}]^2; Array[a, 17, 0] (* _Amiram Eldar_, Dec 11 2018 *) %t A246923 Table[9^n*LegendreP[n, 5/3]^2, {n, 0, 40}] (* _G. C. Greubel_, May 30 2023 *) %o A246923 (PARI) {a(n,p=1,q=9)=polcoeff( 1 / agm(1-p*q*x, sqrt((1-p^2*x)*(1-q^2*x) +x*O(x^n))), n) } %o A246923 for(n=0, 20, print1(a(n), ", ")) %o A246923 (PARI) {a(n,p=1,q=9)=polcoeff( 1 / sqrt((1-p*x)*(1-q*x) +x*O(x^n)), n)^2 } %o A246923 for(n=0, 20, print1(a(n), ", ")) %o A246923 (PARI) {a(n,p=1,q=9)=sum(k=0,n,p^(n-k)*((q-p)/4)^k*binomial(n,k)*binomial(2*k,k))^2 } %o A246923 for(n=0, 20, print1(a(n), ", ")) %o A246923 (Magma) [9^n*Evaluate(LegendrePolynomial(n), 5/3)^2 : n in [0..40]]; // _G. C. Greubel_, May 30 2023 %o A246923 (SageMath) [9^n*gen_legendre_P(n, 0, 5/3)^2 for n in range(41)] # _G. C. Greubel_, May 30 2023 %Y A246923 Cf. A084771, A246467, A246906, A248167. %K A246923 nonn %O A246923 0,2 %A A246923 _Paul D. Hanna_, Sep 07 2014