This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246935 #27 Nov 12 2022 03:09:08 %S A246935 1,1,0,1,1,0,1,2,2,0,1,3,6,3,0,1,4,12,14,5,0,1,5,20,39,34,7,0,1,6,30, %T A246935 84,129,74,11,0,1,7,42,155,356,399,166,15,0,1,8,56,258,805,1444,1245, %U A246935 350,22,0,1,9,72,399,1590,4055,5876,3783,746,30,0 %N A246935 Number A(n,k) of partitions of n into k sorts of parts; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A246935 In general, column k > 1 is asymptotic to c * k^n, where c = Product_{j>=1} 1/(1-1/k^j) = 1/QPochhammer[1/k,1/k]. - _Vaclav Kotesovec_, Mar 19 2015 %C A246935 When k is a prime power greater than 1, A(n,k) is the number of conjugacy classes of n X n matrices over a field of size k. - _Geoffrey Critzer_, Nov 11 2022 %H A246935 Alois P. Heinz, <a href="/A246935/b246935.txt">Antidiagonals n = 0..140, flattened</a> %H A246935 Kent E. Morrison, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. %F A246935 G.f. of column k: Product_{i>=1} 1/(1-k*x^i). %F A246935 T(n,k) = Sum_{i=0..k} C(k,i) * A255970(n,i). %e A246935 A(2,2) = 6: [2a], [2b], [1a,1a], [1a,1b], [1b,1a], [1b,1b]. %e A246935 Square array A(n,k) begins: %e A246935 1, 1, 1, 1, 1, 1, 1, 1, ... %e A246935 0, 1, 2, 3, 4, 5, 6, 7, ... %e A246935 0, 2, 6, 12, 20, 30, 42, 56, ... %e A246935 0, 3, 14, 39, 84, 155, 258, 399, ... %e A246935 0, 5, 34, 129, 356, 805, 1590, 2849, ... %e A246935 0, 7, 74, 399, 1444, 4055, 9582, 19999, ... %e A246935 0, 11, 166, 1245, 5876, 20455, 57786, 140441, ... %e A246935 0, 15, 350, 3783, 23604, 102455, 347010, 983535, ... %p A246935 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A246935 b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) %p A246935 end: %p A246935 A:= (n, k)-> b(n$2, k): %p A246935 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A246935 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Feb 03 2015, after _Alois P. Heinz_ *) %Y A246935 Columns k=0-10 give: A000007, A000041, A070933, A242587, A246936, A246937, A246938, A246939, A246940, A246941, A246942. %Y A246935 Rows n=0-4 give: A000012, A001477, A002378, A027444, A186636. %Y A246935 Main diagonal gives A124577. %Y A246935 Cf. A144064, A255970, A256130. %K A246935 nonn,tabl %O A246935 0,8 %A A246935 _Alois P. Heinz_, Sep 08 2014