cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246945 Decimal expansion of the coefficient e^G appearing in the asymptotic expression of the probability that a random n-permutation is a square, as sqrt(2/Pi)*e^G/sqrt(n).

Original entry on oeis.org

1, 2, 2, 1, 7, 7, 9, 5, 1, 5, 1, 9, 2, 5, 3, 6, 8, 3, 3, 9, 6, 4, 8, 5, 2, 9, 8, 4, 4, 5, 6, 3, 6, 1, 2, 1, 2, 7, 8, 8, 8, 1, 0, 1, 4, 8, 1, 4, 6, 9, 7, 7, 2, 8, 6, 8, 3, 8, 6, 3, 9, 6, 2, 9, 7, 0, 9, 2, 3, 3, 0, 4, 0, 3, 0, 0, 4, 8, 9, 3, 7, 3, 9, 9, 9, 6, 6, 2, 9, 8, 4, 3, 6, 7, 7, 8, 7, 9, 8, 7, 5, 8, 6, 7, 0
Offset: 1

Views

Author

Jean-François Alcover, Sep 08 2014

Keywords

Examples

			G = 0.2003084150040401276417752235643787366634879653405876198956293474890714...
e^G = 1.22177951519253683396485298445636121278881014814697728683863962970923...
sqrt(2/Pi)*e^G = 0.974839011877335012323657925154410019528043463671159620094...
		

References

Crossrefs

Programs

  • Maple
    evalf(1/(product(sech(1/(2*k)), k=1..infinity)), 120) # Vaclav Kotesovec, Sep 20 2014
  • Mathematica
    digits = 42; m0 = 10^4; dm = 1000; tail[m_] := (406425600*PolyGamma[1, m] - 2822400*PolyGamma[3, m] + 9408*PolyGamma[5, m] - 17*PolyGamma[7, m])/3251404800; Clear[g]; g[m_] := g[m] = Sum[Log[Cosh[1/(2*k)]], {k, 1, m - 1}] + tail[m] // N[#, digits + 10] &; g[m0] ; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits + 5] != RealDigits[g[m - dm], 10, digits + 5], Print["m = ", m]; m = m + dm]; G = g[m]; RealDigits[E^G, 10, digits ] // First
    Block[{$MaxExtraPrecision = 1000}, Do[Print[N[Exp[Sum[(-1)^(n + 1)*Zeta[2*n]^2*(1 - 1/2^(2*n))/n/Pi^(2*n), {n, 1, m}]], 120]], {m, 100, 150}]] (* Vaclav Kotesovec, Sep 20 2014 *)

Formula

e^G = prod_{k>=1} cosh(1/(2k)).
G = Sum_{n>=1} (-1)^(n+1) * Zeta(2*n)^2 * (1-1/2^(2*n)) / (n * Pi^(2*n)). - Vaclav Kotesovec, Sep 20 2014

Extensions

More terms from Vaclav Kotesovec, Sep 20 2014