cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246948 Decimal expansion of the coefficient c appearing in the asymptotic expression of the probability that a random n-permutation is a cube as c/n^3.

Original entry on oeis.org

1, 0, 7, 2, 9, 9, 7, 9, 4, 4, 3, 8, 9, 5, 2, 7, 0, 1, 7, 7, 3, 7, 9, 7, 1, 3, 9, 4, 9, 5, 4, 4, 6, 5, 5, 5, 5, 6, 8, 1, 0, 1, 4, 1, 8, 8, 3, 1, 4, 3, 7, 4, 0, 4, 5, 6, 6, 7, 8, 5, 3, 5, 2, 4, 3, 1, 9, 7, 8, 4, 5, 0, 2, 2, 4, 8, 6, 2, 7, 2, 8, 1, 1, 9, 6, 2, 1, 9, 2, 6, 4, 1, 1, 9, 5, 7, 0, 3, 4, 1, 5, 5, 9, 2, 7
Offset: 1

Views

Author

Jean-François Alcover, Sep 08 2014

Keywords

Examples

			1.072997944389527017737971394954465555681...
		

Crossrefs

Cf. A246945.

Programs

  • Maple
    evalf(3^(5/6) * GAMMA(1/3) / (2*Pi) * Product(1/3*(exp(1/(3*k)) + 2*exp(-1/(6*k)) * cos(sqrt(3)/(6*k))), k=1..infinity),100) # Vaclav Kotesovec, Sep 17 2014
  • Mathematica
    digits = 40; m0 = 1000; dm = 1000; psi[x_] := 1/3*(E^x + 2*E^(-x/2)*Cos[Sqrt[3]*(x/2)]); tail[m_] := (-98761420800*PolyGamma[2, m] - 4572288*PolyGamma[5, m] - 53*PolyGamma[8, m])/31998700339200; Clear[f]; f[m_] := f[m] = Sum[Log[psi[1/(3*k)]], {k, 1, m - 1}] + tail[m] // N[#, digits + 10] &; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 5] != RealDigits[f[m - dm], 10, digits + 5], Print["f(", m, ") = ", f[m]]; m = m + dm]; c = 3^(5/6)*Gamma[1/3]/(2*Pi)*E^f[m]; RealDigits[c, 10, 40] // First
  • PARI
    default(realprecision,150); 3^(5/6) * gamma(1/3) / (2*Pi) * exp(sumpos(k=1,log(1/3*(exp(1/(3*k)) + 2*exp(-1/(6*k)) * cos(sqrt(3)/(6*k)))))) \\ Vaclav Kotesovec, Sep 21 2014

Formula

c = 3^(5/6)*Gamma(1/3)/(2*Pi)*prod_{k>=1} psi(1/(3k)), where psi(x) = 1/3*(e^x + 2*e^(-x/2)*cos(sqrt(3)*(x/2))).

Extensions

More terms from Vaclav Kotesovec, Sep 17 2014