cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246949 Decimal expansion of the coefficient K appearing in the asymptotic expression of the number of forests of ordered trees on n total nodes as K*4^(n-1)/sqrt(Pi*n^3).

This page as a plain text file.
%I A246949 #36 Nov 10 2024 16:10:44
%S A246949 1,7,1,6,0,3,0,5,3,4,9,2,2,2,8,1,9,6,4,0,4,7,4,6,4,3,9,9,0,4,2,2,1,2,
%T A246949 0,9,1,9,6,9,7,6,7,8,3,7,3,1,7,8,6,3,4,6,3,1,8,6,8,1,9,4,0,7,1,4,5,1,
%U A246949 4,9,6,2,1,3,2,6,0,2,0,1,6,9,3,6,6,4,2,7,2,3,8,1,5,2,6,4,6,1,1,7,3,0,1,1,5
%N A246949 Decimal expansion of the coefficient K appearing in the asymptotic expression of the number of forests of ordered trees on n total nodes as K*4^(n-1)/sqrt(Pi*n^3).
%C A246949 See A052854.
%H A246949 G. C. Greubel, <a href="/A246949/b246949.txt">Table of n, a(n) for n = 1..5000</a>
%H A246949 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 45.
%H A246949 Ph. Flajolet, É. Fusy, X. Gourdon, D. Panario, and N. Pouyanne, <a href="http://arxiv.org/abs/math/0606370">A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics</a>, arXiv:math/0606370 [math.CO], 2006.
%F A246949 Equals exp(Sum_{k>=1} (1 - sqrt(1 - 4^(1 - k)))/(2*k)).
%e A246949 1.7160305349222819640474643990422120919697678373178634631868194...
%p A246949 evalf(exp(sum(1/(2*k)*(1-sqrt(1-4^(1-k))),k=1..infinity)),100); # _Vaclav Kotesovec_, Sep 17 2014
%t A246949 digits = 76; K = Exp[NSum[1/(2 k)*(1 - Sqrt[1 - 4^(1 - k)]), {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 100]]; RealDigits[K, 10, digits] // First
%Y A246949 Cf. A052854.
%K A246949 nonn,cons
%O A246949 1,2
%A A246949 _Jean-François Alcover_, Sep 08 2014
%E A246949 More terms from _Vaclav Kotesovec_, Sep 17 2014