A246952 Decimal expansion of sigma, a constant appearing in the asymptotic expression of the number a(n) of Carlitz compositions of size n.
5, 7, 1, 3, 4, 9, 7, 9, 3, 1, 5, 8, 0, 8, 7, 6, 4, 3, 1, 1, 2, 2, 1, 7, 9, 0, 4, 8, 9, 1, 9, 7, 4, 6, 0, 0, 3, 3, 6, 1, 7, 6, 2, 2, 4, 9, 3, 7, 5, 3, 4, 1, 4, 5, 1, 1, 7, 1, 8, 1, 8, 5, 8, 7, 9, 4, 2, 7, 4, 6, 2, 8, 6, 5, 6, 8, 6, 6, 8, 9, 8, 8, 7, 3, 8, 4, 8, 5, 3, 0, 9, 7, 1, 9, 3, 4, 3, 7, 5, 7, 6, 3, 5
Offset: 0
Examples
0.571349793158087643112217904891974600336176224937534145...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 38.
- A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
Programs
-
Mathematica
digits = 103; F[x_?NumericQ] := NSum[(-1)^(j - 1)*(x^j/(1 - x^j)), {j, 1, Infinity}, WorkingPrecision -> digits+5]; sigma = x /. FindRoot[F[x] == 1, {x, 2/5, 1/2}, WorkingPrecision -> digits+5]; RealDigits[sigma, 10, digits] // First
Formula
Sigma is the unique solution of the equation F(x)=1, 0 <= x <= 1, where F(x) = sum_{j>=1} (-1)^(j - 1)*(x^j/(1 - x^j)).
a(n) ~ 1/(sigma*F'(sigma))*(1/sigma)^n = c*r^n, where c = 0.456387... and r = A241902 = 1.750243...