cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246955 Numbers j for which the symmetric representation of sigma(j) has two parts, each of width one.

This page as a plain text file.
%I A246955 #40 Oct 22 2023 16:57:13
%S A246955 3,5,7,10,11,13,14,17,19,22,23,26,29,31,34,37,38,41,43,44,46,47,52,53,
%T A246955 58,59,61,62,67,68,71,73,74,76,79,82,83,86,89,92,94,97,101,103,106,
%U A246955 107,109,113,116,118,122,124,127,131,134,136,137,139,142,146,148,149,151,152,157,158,163,164,166,167,172,173,178,179,181,184,188,191,193,194,197,199
%N A246955 Numbers j for which the symmetric representation of sigma(j) has two parts, each of width one.
%C A246955 The sequence is the intersection of A239929 (sigma(j) has two parts) and of A241008 (sigma(j) has an even number of parts of width one).
%C A246955 The numbers in the sequence are precisely those defined by the formula for the triangle, see the link. The symmetric representation of sigma(j) has two parts, each part having width one, precisely when j = 2^(k - 1) * p where 2^k <= row(j) < p, p is prime and row(j) = floor((sqrt(8*j + 1) - 1)/2). Therefore, the sequence can be written naturally as a triangle as shown in the Example section.
%C A246955 The symmetric representation of sigma(j) = 2*j - 2 consists of two regions of width 1 that meet on the diagonal precisely when j = 2^(2^m - 1)*(2^(2^m) + 1) where 2^(2^m) + 1 is a Fermat prime (see A019434). This subsequence of numbers j is 3, 10, 136, 32896, 2147516416, ...[?]... (A191363).
%C A246955 The k-th column of the triangle starts in the row whose initial entry is the first prime larger than 2^(k+1) (that sequence of primes is A014210, except for 2).
%C A246955 Observation: at least the first 82 terms coincide with the numbers j with no middle divisors whose largest divisor <= sqrt(j) is a power of 2, or in other words, coincide with the intersection of A071561 and A365406. - _Omar E. Pol_, Oct 11 2023
%H A246955 Hartmut F. W. Hoft, <a href="/A246955/a246955_1.pdf">Equivalence proof of sequence and triangle</a>
%H A246955 Hartmut F. W. Hoft, <a href="/A246955/a246955_2.pdf">Image for sigma(n) values</a>
%F A246955 Formula for the triangle of numbers associated with the sequence:
%F A246955 P(n, k) = 2^k * prime(n) where n >= 2, 0 <= k <= floor(log_2(prime(n)) - 1).
%e A246955 We show portions of the first eight columns, 0 <= k <= 7, of the triangle.
%e A246955 0    1    2     3     4     5     6     7
%e A246955 3
%e A246955 5    10
%e A246955 7    14
%e A246955 11   22   44
%e A246955 13   26   52
%e A246955 17   34   68    136
%e A246955 19   38   76    152
%e A246955 23   46   92    184
%e A246955 29   58   116   232
%e A246955 31   62   124   248
%e A246955 37   74   148   296   592
%e A246955 41   82   164   328   656
%e A246955 43   86   172   344   688
%e A246955 47   94   188   376   752
%e A246955 53   106  212   424   848
%e A246955 59   118  236   472   944
%e A246955 61   122  244   488   976
%e A246955 67   134  268   536   1072  2144
%e A246955 71   142  284   568   1136  2272
%e A246955 .    .    .     .     .     .
%e A246955 .    .    .     .     .     .
%e A246955 127  254  508   1016  2032  4064
%e A246955 131  262  524   1048  2096  4192  8384
%e A246955 137  274  548   1096  2192  4384  8768
%e A246955 .    .    .     .     .     .     .
%e A246955 .    .    .     .     .     .     .
%e A246955 251  502  1004  2008  4016  8032  16064
%e A246955 257  514  1028  2056  4112  8224  16448  32896
%e A246955 263  526  1052  2104  4208  8416  16832  33664
%e A246955 Since 2^(2^4) + 1 = 65537 is the 6543rd prime, column k = 15 starts with 2^15*(2^(2^16) + 1) = 2147516416 in row 6542 with 65537 in column k = 0.
%e A246955 For an image of the symmetric representations of sigma(m) for all values m <= 137 in the triangle see the link.
%e A246955 The first column is the sequence of odd primes, see A065091.
%e A246955 The second column is the sequence of twice the primes starting with 10, see A001747.
%e A246955 The third column is the sequence of four times the primes starting with 44, see A001749.
%e A246955 For related references also see A033676 (largest divisor of n less than or equal to sqrt(n)).
%t A246955 (* functions path[] and a237270[ ] are defined in A237270 *)
%t A246955 atmostOneDiagonalsQ[n_]:=SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], - 1] - path[n - 1], 1]]]
%t A246955 (* data *)
%t A246955 Select[Range[200], Length[a237270[#]]==2 && atmostOneDiagonalsQ[#]&]
%t A246955 (* function for computing triangle in the Example section through row 55 *)
%t A246955 TableForm[Table[2^k Prime[n], {n, 2, 56}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth->2]
%Y A246955 Cf. A000203, A033676, A071561, A163280, A237270, A237271, A237593, A241008, A241010, A247687, A250068, A250070, A250071, A365406.
%K A246955 nonn
%O A246955 1,1
%A A246955 _Hartmut F. W. Hoft_, Sep 08 2014