A246971 Triangular array read by rows, arising from enumeration of binary words containing n 0's and k 1's that avoid the pattern 0100010.
1, 2, 1, 6, 3, 1, 20, 10, 4, 1, 70, 35, 15, 5, 1, 248, 126, 56, 21, 6, 1, 894, 457, 210, 84, 28, 7, 1, 3264, 1674, 786, 330, 120, 36, 8, 1, 12036, 6183, 2947, 1280, 495, 165, 45, 9, 1, 44722, 22997, 11080, 4933, 1994, 715, 220, 55, 10, 1
Offset: 0
Examples
Array begins: 1; 2, 1; 6, 3, 1; 20, 10, 4, 1; 70, 35, 15, 5, 1; 248, 126, 56, 21, 6, 1; 894, 457, 210, 84, 28, 7, 1; 3264, 1674, 786, 330, 120, 36, 8, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened (first 16 rows from Chai Wah Wu)
- D. Baccherini, D. Merlini, R. Sprugnoli, Binary words excluding a pattern and proper Riordan arrays, Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003).
Crossrefs
Cf. A239103.
Programs
-
Python
from itertools import combinations A246971_list = [] for n in range(10): for k in range(n, -1, -1): c, d0 = 0, ['0']*(n+k) for x in combinations(range(n+k), n): d = list(d0) for i in x: d[i] = '1' if not '0100010' in ''.join(d): c += 1 A246971_list.append(c) # Chai Wah Wu, Sep 12 2014
Extensions
More terms from Chai Wah Wu, Sep 12 2014
Comments