cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247021 Triangular numbers composed of only digits with line segments or both line segments and curves {1, 2, 4, 5, 7}.

This page as a plain text file.
%I A247021 #19 May 21 2025 10:43:04
%S A247021 1,15,21,45,55,171,741,1225,1275,1711,2145,2211,2415,2775,5151,11175,
%T A247021 15225,21115,22155,25425,44551,45451,72771,77421,112575,121771,124251,
%U A247021 125751,151525,211575,221445,222111,224115,227475,254541,255255,417241,451725,551775,577275
%N A247021 Triangular numbers composed of only digits with line segments or both line segments and curves {1, 2, 4, 5, 7}.
%C A247021 Intersection of A000217 and A082741.
%C A247021 Every term is congruent to 1 mod 10 or 5 mod 10. - _Derek Orr_, Sep 19 2014
%H A247021 K. D. Bajpai, <a href="/A247021/b247021.txt">Table of n, a(n) for n = 1..6912</a>
%e A247021 1275 is a term because 1275 = 50 * (50 + 1) / 2, is a triangular number composed of digits 1, 2, 7 and 5.
%e A247021 2145 is a term because 2145 = 65 * (65 + 1) / 2, is a triangular number composed of digits 1, 2, 4 and 5.
%e A247021 a(38) = 451725 is the first occurrence of triangular number using each digit 1, 2, 4, 5 or 7 at least once.
%t A247021 A247021 = {}; Do[t = n*(n + 1)/2; If[Intersection[IntegerDigits[t], {0, 3, 6, 8, 9}] == {}, AppendTo[A247021, t]], {n, 1000}]; A247021
%t A247021 Select[Accumulate[Range[1500]],SubsetQ[{1,2,4,5,7}, IntegerDigits[#]]&] (* _Harvey P. Dale_, May 20 2025 *)
%o A247021 (Python)
%o A247021 for n in range(10**3):
%o A247021   s = str(int(n*(n+1)/2))
%o A247021   if not (s.count('0') + s.count('3') + s.count('6') + s.count('8') + s.count('9')):
%o A247021     print(int(s), end=', ') # _Derek Orr_, Sep 19 2014
%Y A247021 Cf. A000217, A028373, A028374, A082741, A119033.
%K A247021 nonn,base,less
%O A247021 1,2
%A A247021 _K. D. Bajpai_, Sep 09 2014