cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247025 Lengths of prefixes of the infinite string of digits repeat(1379) that are prime.

This page as a plain text file.
%I A247025 #41 Jul 10 2025 19:39:47
%S A247025 2,3,7,81,223,250,255,537,543,1042,2103,4285,25015,35361,43525
%N A247025 Lengths of prefixes of the infinite string of digits repeat(1379) that are prime.
%C A247025 Every prime > 5 in base 10 ends in 1, 3, 7, or 9.  If those digits are repeated, in order, some prefixes of that string are prime.
%C A247025 n such that floor(1379/9999 * 10^n) is prime. - _Robert Israel_, Sep 09 2014
%C A247025 a(13) > 15500. - _Daniel Starodubtsev_, Mar 16 2021
%e A247025 1 and 3 are the first two digits of the string, and 13 is prime. 13 has length 2, so 2 is a term.
%e A247025 137 is prime and three digits long, so 3 is a term.
%e A247025 1379137 is prime and seven digits long, so 7 is a term.
%t A247025 Select[Range[4300],PrimeQ[FromDigits[PadRight[{},#,{1,3,7,9}]]]&] (* The program generates the first 12 terms of the sequence. *) (* _Harvey P. Dale_, Jun 11 2024 *)
%o A247025 (Python)
%o A247025 from sympy import isprime
%o A247025 from itertools import cycle
%o A247025 it=cycle([1,3,7,9])
%o A247025 c=0
%o A247025 a=0
%o A247025 for i in it:
%o A247025     c+=1
%o A247025     a*=10
%o A247025     a+=i
%o A247025     if isprime(a):
%o A247025         print(c)
%o A247025 (PARI) lista(nn) = {s = 0; digs = [1,3,7,9]; id = 1; for (n=1, nn, s = 10*s + digs[id]; if (isprime(s), print1(n, ", ")); id++; if (id==5, id = 1););} \\ _Michel Marcus_, Oct 11 2014
%o A247025 (Magma) [n: n in [0..300] | IsPrime(Floor(1379/9999 * 10^n))]; // _Vincenzo Librandi_, Oct 17 2014
%Y A247025 Cf. A000040, A007652.
%K A247025 nonn,base,more,less
%O A247025 1,1
%A A247025 _Mark E. Shoulson_, Sep 09 2014
%E A247025 Edited. Name specified. Example reformulated. a(12) added (using R. Israel's formula). Keyword less and Crossreferences added. - _Wolfdieter Lang_, Nov 03 2014
%E A247025 a(13)-a(14) from _Michael S. Branicky_, May 29 2023
%E A247025 a(15) from _Michael S. Branicky_, Jun 13 2024