This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247026 #17 May 05 2019 08:58:23 %S A247026 1,1,1,1,1,1,1,1,4,1,1,1,3,27,1,1,1,4,12,256,1,1,1,3,19,100,3125,1,1, %T A247026 1,4,12,116,1075,46656,1,1,1,3,21,73,985,13356,823543,1,1,1,4,10,148, %U A247026 580,11026,197764,16777216,1,1,1,3,21,44,1281,5721,145621,3403576,387420489,1 %N A247026 Number A(n,k) of endofunctions on [n] that are the k-th power of an endofunction; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A247026 Number of endofunctions f on [n] such that an endofunction g on [n] exists with f=g^k. %e A247026 A(3,2) = 12: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,1), (3,1,2), (3,2,3), (3,3,3). %e A247026 A(3,6) = 10: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (3,2,3), (3,3,3). %e A247026 A(4,4) = 73: (1,1,1,1), (1,1,1,4), (1,1,3,1), (1,1,3,3), ..., (4,4,1,3), (4,4,2,3), (4,4,3,4), (4,4,4,4). %e A247026 Square array A(n,k) begins: %e A247026 1, 1, 1, 1, 1, 1, 1, 1, ... %e A247026 1, 1, 1, 1, 1, 1, 1, 1, ... %e A247026 1, 4, 3, 4, 3, 4, 3, 4, ... %e A247026 1, 27, 12, 19, 12, 21, 10, 21, ... %e A247026 1, 256, 100, 116, 73, 148, 44, 148, ... %e A247026 1, 3125, 1075, 985, 580, 1281, 295, 1305, ... %e A247026 1, 46656, 13356, 11026, 5721, 12942, 3136, 13806, ... %e A247026 1, 823543, 197764, 145621, 69244, 150955, 42784, 169681, ... %t A247026 (* This program is not suitable to compute a large number of terms. *) %t A247026 nmax = 8; %t A247026 f[a_][b_] /; Length[a]==Length[b] := Table[b[[a[[i]]]], {i, 1, Length[a]}]; %t A247026 A[n_, k_] := Nest[f[#], Range[n], k]& /@ Tuples[Range[n], {n}] // Union // Length; %t A247026 Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, May 05 2019 *) %Y A247026 Columns k=0-10 give: A000012, A000312, A102687, A163859, A163860, A163861, A247053, A247054, A247055, A247056, A247057. %Y A247026 Rows n=0+1, 2-7 give: A000012, A103947, A103948, A103949, A102709, A103950, A247058. %Y A247026 Main diagonal gives A247059. %Y A247026 Cf. A247005 (the same for permutations). %K A247026 nonn,tabl %O A247026 0,9 %A A247026 _Alois P. Heinz_, Sep 09 2014