This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247037 #23 Sep 08 2022 08:46:09 %S A247037 1,5,8,8,6,7,4,7,7,9,7,9,4,7,5,4,0,6,1,4,9,8,5,3,9,3,0,0,2,6,0,6,7,3, %T A247037 9,0,5,7,0,0,3,1,5,2,5,8,1,1,7,1,3,3,4,7,0,1,7,5,8,5,2,7,6,2,0,2,8,7, %U A247037 1,2,9,1,5,1,3,0,7,2,9,4,2,9,4,7,9,3,2,5,8,1,2,6,9,3,5,1,9,6,1,3,6,4,7 %N A247037 Decimal expansion of Sum_{k >= 0} 1/(4*k+3)^2. %D A247037 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.7 Catalan's constant p. 55. %H A247037 G. C. Greubel, <a href="/A247037/b247037.txt">Table of n, a(n) for n = 0..10000</a> %F A247037 Equals Pi^2/16 - G/2, where G is Catalan's constant. %F A247037 Equals A222068 - A006752/2. %F A247037 Equals zeta(2, 3/4)/16 = Psi(1, 3/4)/16, with the Hurwitz zeta function and the Trigamma function Psi(1, z), and the partial sums of the series given in the name are {A173955(n+2) / A173954(n+2)}_{n>=0}. - _Wolfdieter Lang_, Nov 14 2017 %F A247037 Equals Integral_{x=1..oo} log(x)/(x^4 - 1) dx. - _Amiram Eldar_, Jul 17 2020 %e A247037 0.158867477979475406149853930026067390570031525811713347... %t A247037 RealDigits[Pi^2/16 - Catalan/2 , 10, 103] // First %o A247037 (PARI) Pi^2/16 - Catalan/2 \\ _Charles R Greathouse IV_, Jan 30 2018 %o A247037 (PARI) zetahurwitz(2,3/4)/16 \\ _Charles R Greathouse IV_, Jan 30 2018 %o A247037 (PARI) sumpos(k=0,1/(4*k+3)^2) \\ _Charles R Greathouse IV_, Jan 30 2018 %o A247037 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (Pi(R)^2 - 8*Catalan(R))/16; // _G. C. Greubel_, Aug 24 2018 %Y A247037 Cf. A006752, A173955/A173954, A222068, A222183. %K A247037 nonn,cons,easy %O A247037 0,2 %A A247037 _Jean-François Alcover_, Sep 10 2014