This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247038 #27 Feb 16 2025 08:33:23 %S A247038 6,8,4,7,2,4,7,8,8,5,6,3,1,5,7,1,2,3,2,9,9,1,4,6,1,4,8,7,5,5,7,7,7,6, %T A247038 2,0,4,6,0,6,7,5,4,1,6,3,3,7,4,4,8,8,3,6,6,0,6,2,8,9,8,6,7,8,1,5,9,5, %U A247038 6,8,8,2,1,7,6,2,6,9,3,6,1,0,4,3,7,0,7,6,8,1,4,3,4,9,5,8,5,8,1,0,0,9,9,7 %N A247038 Decimal expansion of Integral_{x=0..1} log(floor(1/x))/(1+x) dx. %C A247038 The same integral with 1/x instead of floor(1/x) evaluates to Pi^2/12 = A072691. %D A247038 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8 Khinchin-Lévy constants, p. 61. %H A247038 David Bailey, Jonathan Borwein and Richard Crandall, <a href="https://doi.org/10.1090/S0025-5718-97-00800-4">On the Khintchine constant</a>, Mathematics of Computation, Vol. 66, No. 217 (1997), pp. 417-431. %H A247038 Daniel Shanks and John W. Wrench, Jr., <a href="https://www.jstor.org/stable/2309633">Khintchine's constant</a>, The American Mathematical Monthly, Vol. 66, No. 4 (1959), pp. 276-279. %H A247038 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/KhinchinsConstant.html">Khinchin's Constant</a> %F A247038 Equals log(2)*log(K), where K is Khinchin's constant A002210 = 2.685452... %F A247038 From _Amiram Eldar_, Aug 19 2020: (Start) %F A247038 Equals Sum_{k>=1} (zeta(2*k)-1)/k * (1 - 1/2 + 1/3 - ... + 1/(2*k - 1)). %F A247038 Equals -Sum_{k>=2} log(1-1/k) * log(1+1/k). (End) %e A247038 0.6847247885631571232991461487557776204606754163374488366... %t A247038 RealDigits[Log[2]*Log[Khinchin], 10, 104] // First %o A247038 (Python) %o A247038 from mpmath import mp, log, khinchin %o A247038 mp.dps=106 %o A247038 print([int(n) for n in list(str(log(2)*log(khinchin)))[2:-2]]) # _Indranil Ghosh_, Jul 08 2017 %Y A247038 Cf. A002210, A072691. %K A247038 nonn,cons,easy %O A247038 0,1 %A A247038 _Jean-François Alcover_, Sep 10 2014