A247040 Decimal expansion of M_6, the 6th Madelung constant.
1, 9, 6, 5, 5, 5, 7, 0, 3, 9, 0, 0, 9, 0, 7, 8, 2, 8, 1, 3, 1, 2, 3, 1, 3, 5, 5, 5, 7, 3, 5, 1, 8, 5, 3, 6, 7, 8, 6, 8, 9, 7, 6, 7, 2, 8, 4, 4, 6, 4, 6, 4, 5, 1, 1, 7, 0, 8, 5, 6, 5, 2, 8, 8, 7, 8, 1, 7, 9, 6, 4, 0, 1, 4, 3, 2, 5, 3, 5, 4, 5, 7, 6, 4, 9, 3, 1, 3, 4, 2, 6, 6, 6, 3, 6, 7, 2, 6, 7, 6, 4, 2, 9, 8
Offset: 1
Examples
-1.9655570390090782813123135557351853678689767284464645117...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Eric Weisstein's MathWorld, Dirichlet Beta Function
- Eric Weisstein's MathWorld, Madelung Constants
Programs
-
Mathematica
beta[x_] := (Zeta[x, 1/4] - Zeta[x, 3/4])/4^x; M6 = (3/Pi^2)*(4*(Sqrt[2]-1)*Zeta[1/2]*beta[5/2] - (4*Sqrt[2]-1)*Zeta[5/2]*beta[1/2]); RealDigits[M6, 10, 104][[1]]
-
PARI
th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2) intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 07 2016
-
PARI
th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2) intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016
Formula
M6 = (3/Pi^2)*(4*(sqrt(2)-1)*zeta(1/2)*beta(5/2) - (4*sqrt(2)-1)*zeta(5/2)*beta(1/2)), where beta is Dirichlet's "beta" function.