cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247043 Decimal expansion of gamma_2, a lattice sum constant, analog of Euler's constant for two-dimensional lattices.

Original entry on oeis.org

6, 7, 0, 9, 0, 8, 3, 0, 7, 8, 8, 2, 4, 7, 8, 8, 0, 6, 0, 8, 5, 2, 7, 1, 5, 9, 9, 2, 5, 3, 8, 5, 3, 4, 2, 6, 8, 1, 6, 2, 6, 0, 9, 7, 1, 7, 9, 7, 6, 7, 2, 5, 3, 5, 0, 5, 8, 3, 6, 1, 7, 6, 7, 5, 0, 0, 0, 7, 0, 3, 2, 9, 9, 9, 4, 3, 6, 8, 4, 9, 8, 6, 2, 5, 8, 2, 4, 1, 4, 7, 5, 3, 0, 8, 5, 9, 6, 1, 9, 4, 5, 5, 4
Offset: 0

Views

Author

Jean-François Alcover, Sep 10 2014

Keywords

Examples

			-0.670908307882478806085271599253853426816260971797672535...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 80.

Crossrefs

Cf. A247042.

Programs

  • Mathematica
    delta2 = 2*Zeta[1/2]*(Zeta[1/2, 1/4] - Zeta[1/2, 3/4]); gamma2 = (1/4)*(delta2 + 2*Log[(Sqrt[2] + 1)/(Sqrt[2] - 1)] - 4*EulerGamma); RealDigits[gamma2, 10, 103] // First
  • PARI
    (2*zeta(1/2)*(zetahurwitz(1/2, 1/4)-zetahurwitz(1/2, 3/4)) + 2*log((sqrt(2) + 1)/(sqrt(2) - 1)))/4 - Euler \\ Charles R Greathouse IV, Jan 31 2018

Formula

gamma_2 = (1/4)*(delta_2 + 2*log((sqrt(2) + 1)/(sqrt(2) - 1)) - 4*EulerGamma), where delta_2 is A247042.