cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A247277 Decimal expansion of gamma_3, a lattice sum constant, analog of Euler's constant for 3-dimensional lattices.

Original entry on oeis.org

5, 8, 1, 7, 4, 8, 0, 4, 5, 6, 5, 9, 7, 2, 2, 6, 7, 6, 5, 5, 4, 8, 9, 9, 2, 6, 5, 8, 4, 6, 8, 5, 3, 1, 7, 7, 1, 4, 6, 0, 2, 2, 4, 6, 5, 6, 3, 1, 4, 4, 4, 9, 2, 4, 3, 1, 3, 6, 4, 0, 0, 8, 7, 5, 4, 3, 8, 9, 5, 6, 2, 1, 9, 4, 8, 9, 2, 7, 8, 6, 3, 8, 0, 3, 4, 3, 4, 7, 4, 4, 7, 9, 9, 5, 9, 0, 4, 4, 5, 3, 2, 4
Offset: 0

Views

Author

Jean-François Alcover, Sep 11 2014

Keywords

Examples

			0.58174804565972267655489926584685317714602246563144492431364...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 80.

Crossrefs

Cf. A247042 (delta_2), A247043 (gamma_2), A247046 (delta_3).

Programs

  • Mathematica
    digits = 100; k0 = 10; dk = 10; Clear[s]; s[k_] := s[k] = 7*(Pi/6) - 19/2*Log[2] + 4*Sum[(3 + 3*(-1)^m + (-1)^(m + n))*Csch[Pi*Sqrt[m^2 + n^2]]/Sqrt[m^2 + n^2], {m, 1, k}, {n, 1, k}] // N[#, digits + 10] &; s[k0]; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits + 5][[1]] != RealDigits[s[k - dk], 10, digits + 5][[1]], k = k + dk]; Pi0 = s[k]; delta2 = 2*Zeta[1/2]*(Zeta[1/2, 1/4] - Zeta[1/2, 3/4]); delta3 = Pi0 + Pi/6; gamma2 = (1/4)*(delta2 + 2*Log[(Sqrt[2] + 1)/(Sqrt[2] - 1)] - 4*EulerGamma); gamma3 = (1/8)*(delta3 + 3*(- Pi/6 + Log[(Sqrt[3] + 1)/(Sqrt[3] - 1)]) - 12*gamma2 - 6*EulerGamma); RealDigits[gamma3, 10, 102] // First

Formula

gamma_3 = (1/8)*(delta_3 + 3*(- Pi/6 + log((sqrt(3) + 1)/(sqrt(3) - 1))) - 12*gamma_2 - 6*EulerGamma).
Showing 1-1 of 1 results.