This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247052 #18 Jun 23 2025 16:05:00 %S A247052 2,5,7,11,17,41,47,71,127,151,157,211,227,241,251,257,271,277,421,457, %T A247052 521,541,547,557,571,577,727,751,757,1117,1151,1171,1217,1277,1427, %U A247052 1447,1451,1471,1511,1571,1721,1741,1747,1777,2111,2141,2221,2251,2411,2417 %N A247052 Primes composed of only digits with line segments or both line segments and curves {1, 2, 4, 5, 7}. %C A247052 Intersection of A000040 and A082741. %H A247052 K. D. Bajpai, <a href="/A247052/b247052.txt">Table of n, a(n) for n = 1..15000</a> %e A247052 127 is in the sequence because it is prime and composed of digits 1, 2 and 7 only. %e A247052 1427 is in the sequence because it is prime and composed of digits 1, 2, 4 and 7 only. %e A247052 a(129) = 12457 is the smallest prime using all the digits 1, 2, 4, 5 and 7 only once. %t A247052 Select[Prime[Range[500]], Intersection[IntegerDigits[#], {0, 3, 6, 8, 9}] == {} &] %o A247052 (Python) %o A247052 from sympy import prime %o A247052 for n in range(1,10**3): %o A247052 s = str(prime(n)) %o A247052 if not (s.count('0') + s.count('3') + s.count('6') + s.count('8') + s.count('9')): %o A247052 print(s,end=', ') # _Derek Orr_, Sep 18 2014 %o A247052 (Magma) [NthPrime(n): n in [1..400] | Set(Intseq(NthPrime(n))) subset [1,2,4,5,7] ]; // _Vincenzo Librandi_, Sep 19 2014 %Y A247052 Cf. A000040, A082741. %K A247052 nonn,base,less %O A247052 1,1 %A A247052 _K. D. Bajpai_, Sep 10 2014