cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247052 Primes composed of only digits with line segments or both line segments and curves {1, 2, 4, 5, 7}.

This page as a plain text file.
%I A247052 #18 Jun 23 2025 16:05:00
%S A247052 2,5,7,11,17,41,47,71,127,151,157,211,227,241,251,257,271,277,421,457,
%T A247052 521,541,547,557,571,577,727,751,757,1117,1151,1171,1217,1277,1427,
%U A247052 1447,1451,1471,1511,1571,1721,1741,1747,1777,2111,2141,2221,2251,2411,2417
%N A247052 Primes composed of only digits with line segments or both line segments and curves {1, 2, 4, 5, 7}.
%C A247052 Intersection of A000040 and A082741.
%H A247052 K. D. Bajpai, <a href="/A247052/b247052.txt">Table of n, a(n) for n = 1..15000</a>
%e A247052 127 is in the sequence because it is prime and composed of digits 1, 2 and 7 only.
%e A247052 1427 is in the sequence because it is prime and composed of digits 1, 2, 4 and 7 only.
%e A247052 a(129) = 12457 is the smallest prime using all the digits 1, 2, 4, 5 and 7 only once.
%t A247052 Select[Prime[Range[500]], Intersection[IntegerDigits[#], {0, 3, 6, 8, 9}] == {} &]
%o A247052 (Python)
%o A247052 from sympy import prime
%o A247052 for n in range(1,10**3):
%o A247052   s = str(prime(n))
%o A247052   if not (s.count('0') + s.count('3') + s.count('6') + s.count('8') + s.count('9')):
%o A247052     print(s,end=', ') # _Derek Orr_, Sep 18 2014
%o A247052 (Magma) [NthPrime(n): n in [1..400] | Set(Intseq(NthPrime(n))) subset [1,2,4,5,7] ]; // _Vincenzo Librandi_, Sep 19 2014
%Y A247052 Cf. A000040, A082741.
%K A247052 nonn,base,less
%O A247052 1,1
%A A247052 _K. D. Bajpai_, Sep 10 2014