cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247077 Composite numbers for which the harmonic mean of proper divisors is an integer.

This page as a plain text file.
%I A247077 #52 Feb 06 2021 10:22:39
%S A247077 1645,88473,63626653506
%N A247077 Composite numbers for which the harmonic mean of proper divisors is an integer.
%C A247077 Of course, for all prime numbers the harmonic mean of proper divisors is an integer.
%C A247077 a(4) >= 2*10^11. - _Hiroaki Yamanouchi_, Nov 20 2014
%C A247077 Conjecture: all terms are of the form m*(sigma(m)-1) where sigma(m)-1 is prime. - _Chai Wah Wu_, Dec 15 2020
%C A247077 a(4) <= 22351741783447265625. - _Daniel Suteu_, Dec 16 2020
%C A247077 From _Chai Wah Wu_, Feb 04 2021: (Start)
%C A247077 Other terms of the sequence of the form m*(sigma(m)-1) correspond to the following values of m:
%C A247077     3 *   5^143
%C A247077     3 *   5^623
%C A247077     3 *   5^1423
%C A247077     5 *   7^127
%C A247077     5 *   7^6595
%C A247077   101 * 103^25
%C A247077 (End)
%C A247077 Equivalently, composite numbers k such that sigma(k)-1 divides k*(tau(k)-1), where sigma = A000203 and tau = A000005. -  _Daniel Suteu_, Feb 05 2021
%e A247077 The proper divisors of 1645 are [1,5,7,35,47,235,329] and their harmonic mean is 7/(1/1 + 1/5 + 1/7 + 1/35 + 1/47 + 1/235 + 1/329) = 5.
%t A247077 Select[Range[2,100000],(IntegerQ[HarmonicMean[Most[Divisors[#]]]] && Not[PrimeQ[#]])&] (* _Daniel Lignon_, Nov 17 2014 *)
%o A247077 (PARI) lista(nn) = forcomposite (n=2, nn, my(d=divisors(n)); if (denominator((#d-1)/sum(i=1, #d-1, 1/d[i])) == 1, print1(n, ", "))); \\ _Michel Marcus_, Nov 17 2014
%o A247077 (PARI) isok(n) = n > 1 && !isprime(n) && (n*(numdiv(n)-1)) % (sigma(n)-1) == 0; \\ _Daniel Suteu_, Feb 05 2021
%Y A247077 Cf. A001599 for harmonic mean of all divisors and A247078 for harmonic mean of nontrivial divisors.
%K A247077 nonn,more,bref
%O A247077 1,1
%A A247077 _Daniel Lignon_, Nov 17 2014
%E A247077 a(3) from _Hiroaki Yamanouchi_, Nov 20 2014