cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247078 Numbers for which the harmonic mean of nontrivial divisors is an integer.

This page as a plain text file.
%I A247078 #47 Nov 10 2024 16:15:01
%S A247078 4,9,25,49,121,169,289,345,361,529,841,961,1050,1369,1645,1681,1849,
%T A247078 2209,2809,3481,3721,4386,4489,5041,5329,6241,6489,6889,7921,8041,
%U A247078 9409,10201,10609,11449,11881,12769,13026,16129,17161,18769,19321,22201,22801
%N A247078 Numbers for which the harmonic mean of nontrivial divisors is an integer.
%C A247078 All the squares of prime numbers (A001248) have this property but there are other numbers (A247079): 345, 1050, 1645, 4386, 6489, 8041, ...
%H A247078 Amiram Eldar, <a href="/A247078/b247078.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1269 from Daniel Lignon)
%e A247078 The divisors of 25 are [1,5,25] and the nontrivial divisors are [5]. The harmonic mean is 1/(1/5)=5. That's the same for all squares of prime numbers.
%e A247078 The nontrivial divisors of 345 are [3,5,15,23,69,115] and their harmonic mean is 6/(1/3+1/5+1/15+1/23+1/69+1/115) = 9.
%p A247078 hm:= S -> nops(S)/convert(map(t->1/t,S),`+`):
%p A247078 filter:= n -> not isprime(n) and type(hm(numtheory:-divisors(n) minus {1,n}),integer):
%p A247078 select(filter, [$2..10^5]); # _Robert Israel_, Nov 17 2014
%t A247078 Select[Range[2,100000],(Not[PrimeQ[#]] && IntegerQ[HarmonicMean[Rest[Most[Divisors[#]]]]])&]
%o A247078 (PARI) isok(n) = my(d=divisors(n)); (#d >2) && (denominator((#d-2)/sum(i=2, #d-1, 1/d[i])) == 1);
%Y A247078 Cf. similar sequences: A001599 (with all divisors), A247077 (with proper divisors).
%K A247078 nonn
%O A247078 1,1
%A A247078 _Daniel Lignon_, Nov 17 2014