cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247080 Numbers whose Euler totient is the reverse of the sum of its aliquot parts.

This page as a plain text file.
%I A247080 #33 Aug 26 2019 04:51:18
%S A247080 2,735,7665,11505,42630,64578,3440409,11263073973
%N A247080 Numbers whose Euler totient is the reverse of the sum of its aliquot parts.
%C A247080 Value of x such that phi(x) = Rev(sigma(x) - x).
%C A247080 a(9) > 2*10^11. - _Hiroaki Yamanouchi_, Nov 22 2014
%C A247080 a(9) > 10^13. - _Giovanni Resta_, Aug 26 2019
%e A247080 phi(2) = 1 and sigma(2) - 2 = 1.
%e A247080 phi(735) = 336 and sigma(735) - 735 = 633.
%e A247080 phi(7665) = 3456 and sigma(7665) - 7665 = 6543.
%p A247080 with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
%p A247080 for z from 1 to ilog10(x)+1 do
%p A247080 y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
%p A247080 P:=proc(q) local n; for n from 1 to q do
%p A247080 if phi(n)=T(sigma(n)-n) then print(n); fi; od; end: P(10^9);
%t A247080 Select[Range[10^6], EulerPhi[#] == FromDigits[Reverse[IntegerDigits[DivisorSigma[1, #] - #]]] &] (* _Michael De Vlieger_, Jan 29 2015 *)
%o A247080 (PARI) rev(n) = subst(Polrev(digits(n)), x, 10);
%o A247080 isok(n) = rev(sigma(n)-n) == eulerphi(n); \\ _Michel Marcus_, Jan 29 2015
%Y A247080 Cf. A000010, A001065, A069225, A254320.
%K A247080 nonn,base,more
%O A247080 1,1
%A A247080 _Paolo P. Lava_, Nov 17 2014
%E A247080 a(7)-a(8) from _Hiroaki Yamanouchi_, Nov 22 2014