This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247080 #33 Aug 26 2019 04:51:18 %S A247080 2,735,7665,11505,42630,64578,3440409,11263073973 %N A247080 Numbers whose Euler totient is the reverse of the sum of its aliquot parts. %C A247080 Value of x such that phi(x) = Rev(sigma(x) - x). %C A247080 a(9) > 2*10^11. - _Hiroaki Yamanouchi_, Nov 22 2014 %C A247080 a(9) > 10^13. - _Giovanni Resta_, Aug 26 2019 %e A247080 phi(2) = 1 and sigma(2) - 2 = 1. %e A247080 phi(735) = 336 and sigma(735) - 735 = 633. %e A247080 phi(7665) = 3456 and sigma(7665) - 7665 = 6543. %p A247080 with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0; %p A247080 for z from 1 to ilog10(x)+1 do %p A247080 y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: %p A247080 P:=proc(q) local n; for n from 1 to q do %p A247080 if phi(n)=T(sigma(n)-n) then print(n); fi; od; end: P(10^9); %t A247080 Select[Range[10^6], EulerPhi[#] == FromDigits[Reverse[IntegerDigits[DivisorSigma[1, #] - #]]] &] (* _Michael De Vlieger_, Jan 29 2015 *) %o A247080 (PARI) rev(n) = subst(Polrev(digits(n)), x, 10); %o A247080 isok(n) = rev(sigma(n)-n) == eulerphi(n); \\ _Michel Marcus_, Jan 29 2015 %Y A247080 Cf. A000010, A001065, A069225, A254320. %K A247080 nonn,base,more %O A247080 1,1 %A A247080 _Paolo P. Lava_, Nov 17 2014 %E A247080 a(7)-a(8) from _Hiroaki Yamanouchi_, Nov 22 2014