A247089 Initial members of prime quadruples (p, p+2, p+30, p+32).
11, 29, 41, 71, 107, 149, 197, 239, 281, 431, 569, 827, 1019, 1031, 1061, 1289, 1451, 1667, 1997, 2081, 2111, 2237, 2309, 2657, 2969, 3299, 3329, 3359, 3527, 3821, 4019, 4127, 4229, 4241, 4517, 5849, 6269, 6659, 6761, 7457, 7559, 8597
Offset: 1
Keywords
Examples
For n=11, the numbers 11, 13, 41, 43, are primes.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..100000
- Eric Weisstein's World of Mathematics, Prime Quadruplet.
- Eric Weisstein's World of Mathematics, Twin Primes
- Wikipedia, Twin prime
Crossrefs
Programs
-
Mathematica
a247089[n_] := Select[Prime@ Range@ n, And[PrimeQ[# + 2], PrimeQ[# + 30], PrimeQ[# + 32]] &]; a247089[1100] (* Michael De Vlieger, Jan 11 2015 *)
-
Python
from sympy import isprime for n in range(1,10000001,2): if isprime(n) and isprime(n+2) and isprime(n+30) and isprime(n+32): print(n,end=', ')
Comments