A247090 Eric Rowland's generalization of A132199 as a rectangular array A read by upward antidiagonals.
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 5, 3, 1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Array A begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 3, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, ... 1, 3, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, ... 2, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, ... 1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, ... 2, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 13, ... 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 13, ... 2, 3, 1, 1, 1, 1, 1, 1, 1, 11, 3, 1, ... 1, 3, 1, 1, 1, 1, 1, 1, 1, 11, 3, 1, ... 2, 1, 1, 1, 1, 1, 1, 1, 1, 11, 3, 1, ... ...
Links
- Eric S. Rowland, A natural prime-generating recurrence, J. Integer Seq., 11 (2008), Article 08.2.8.
Programs
-
Mathematica
(* Array A: *) max := 13; b[n_, 1] := n; b[n_, k_] := b[n, k] = b[n, k - 1] + GCD[k, b[n, k - 1]]; Grid[Transpose[Differences[Transpose[Table[b[n, k], {n, max}, {k, max}]]]]] (* Array antidiagonals flattened: *) max := 13; b[n_, 1] := n; b[n_, k_] := b[n, k] = b[n, k - 1] + GCD[k, b[n, k - 1]]; Flatten[Table[Transpose[Differences[Transpose[Table[b[n, k], {n, max}, {k, max}]]]][[n - k + 1]][[k]], {n, max - 1}, {k, n}]]
Comments