cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247145 Composite numbers such that the product of the number's proper divisors is divisible by the sum of the number's proper divisors.

This page as a plain text file.
%I A247145 #34 Mar 20 2023 17:21:33
%S A247145 6,12,24,28,40,42,56,60,90,120,140,153,216,234,270,290,360,440,496,
%T A247145 522,568,585,588,672,708,819,924,984,992,1001,1170,1316,1320,1365,
%U A247145 1431,1780,2016,2184,2295,2296,2299,2464,2466,2655,2832,3100,3344,3420,3627,3724,3948,4320,4336,4416,4680
%N A247145 Composite numbers such that the product of the number's proper divisors is divisible by the sum of the number's proper divisors.
%C A247145 Equal to the indices of the zero terms that correspond to composite numbers in A191906.
%H A247145 Robert Israel, <a href="/A247145/b247145.txt">Table of n, a(n) for n = 1..1203</a>
%e A247145 12 is on the list because the proper divisors of 12 are [1,2,3,4,6]. The product of these numbers is 144. Their sum is 16. 144 is divisible by 16.
%p A247145 filter:= proc(n)
%p A247145        local d,p,s;
%p A247145      if isprime(n) then return false fi;
%p A247145      d:= numtheory:-divisors(n) minus {n};
%p A247145      convert(d,`*`) mod convert(d,`+`) = 0;
%p A247145 end proc:
%p A247145 select(filter, [$2..10000]); # _Robert Israel_, Dec 16 2014
%t A247145 a247145[n_Integer] :=
%t A247145 Select[Select[Range[n], CompositeQ[#] &],
%t A247145 Divisible[Times @@ Most@Divisors[#], Plus @@ Most@Divisors[#]] &]; a247145[4680] (* _Michael De Vlieger_, Dec 15 2014 *)
%t A247145 fQ[n_Integer] := Block[{d = Most@Divisors@n}, Mod[Times @@ d, Plus @@ d] == 0]; Select[Range@4680, ! PrimeQ@# && fQ@# &] (* _Michael De Vlieger_, Dec 19 2014, suggested by _Robert G. Wilson v_ *)
%o A247145 (Python)
%o A247145 from functools import reduce
%o A247145 from operator import mul
%o A247145 def divs(n):
%o A247145     for i in range(1, int(n / 2 + 1)):
%o A247145         if n % i == 0:
%o A247145             yield i
%o A247145     yield n
%o A247145 g = []
%o A247145 for a in range(2, 100):
%o A247145     q = list(divs(a))[0:-1]
%o A247145     if reduce(mul, q, 1) % sum(q) == 0 and len(q) != 1:
%o A247145         g.append(a)
%o A247145 print(g)
%o A247145 (PARI) forcomposite(n=1,10^3,d=divisors(n);p=prod(i=1,#d-1,d[i]);if(!(p%(sigma(n)-n)),print1(n,", "))) \\ _Derek Orr_, Nov 27 2014
%Y A247145 Cf. A145551.
%K A247145 nonn,easy
%O A247145 1,1
%A A247145 _David Consiglio, Jr._, Nov 20 2014
%E A247145 More terms from _Derek Orr_, Dec 03 2014