cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247147 Numbers k such that 3*k-4 and 2^k-1 are prime.

This page as a plain text file.
%I A247147 #30 Sep 08 2022 08:46:09
%S A247147 2,3,5,7,17,19,31,61,89,107,521,1279,9689,9941,21701,23209,216091,
%T A247147 13466917,30402457,57885161
%N A247147 Numbers k such that 3*k-4 and 2^k-1 are prime.
%C A247147 All terms are primes.
%H A247147 Ben Green and Terence Tao, <a href="https://arxiv.org/abs/math/0404188">The primes contain arbitrarily long arithmetic progressions</a>, arXiv:math/0404188 [math.NT], 2004-2007; Annals of Mathematics, 167 (2008), pp. 481-547.
%t A247147 Select[Range[10000], PrimeQ[2^# - 1] && PrimeQ[3 # - 4] &]
%o A247147 (Magma) [n: n in [0..10000] | IsPrime(3*n-4) and IsPrime(2^n-1)];
%o A247147 (Python)
%o A247147 from sympy import isprime
%o A247147 from itertools import count, islice
%o A247147 def agen(startk=1):
%o A247147     for k in count(startk):
%o A247147         if isprime(3*k-4) and isprime(2**k-1):
%o A247147             yield k
%o A247147 print(list(islice(agen(), 12))) # _Michael S. Branicky_, Jul 31 2022
%Y A247147 Cf. A000043, A001348, A228121.
%K A247147 nonn,more
%O A247147 1,1
%A A247147 _Vincenzo Librandi_, Nov 21 2014
%E A247147 a(20) using A000043 from _Michael S. Branicky_, Jul 31 2022