This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247163 #75 Feb 16 2025 08:33:23 %S A247163 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, %T A247163 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48, %U A247163 49,50,51,52,53,54,55,56,59,60,61,64,67,68,69,74,75,76 %N A247163 Nonnegative numbers n such that abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) is prime. %C A247163 62 is the smallest number not in this sequence. %H A247163 Robert Price, <a href="/A247163/b247163.txt">Table of n, a(n) for n = 1..2328</a> %H A247163 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a> %e A247163 4 is in this sequence since abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) = abs((1024 - 34048 + 430656 - 2534064 + 6881176 - 6823316)/4) = 519643 is prime. %t A247163 Select[Range[0, 100], PrimeQ[1/4 (#^5 - 133#^4 + 6729#^3 - 158379#^2 + 1720294# - 6823316)] &] %Y A247163 Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266. %Y A247163 Cf. A271980, A272030, A272074, A272075, A272160, A271144, A272285, A272401, A272438, A272444, A272410, A272555, A272710. %K A247163 nonn %O A247163 1,3 %A A247163 _Robert Price_, May 04 2016