This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247174 #20 Jul 17 2022 02:21:34 %S A247174 1,3,15,255,65535,2200694,2619705,6372794,40588485,76466985,81591194, %T A247174 118018094,206569605,470542485,525644385,726638834,791937614, %U A247174 971122514,991172805 %N A247174 Numbers k such that phi(k) = phi(k+1) and simultaneously Product_{d|k} phi(d) = Product_{d|(k+1)} phi(d) where phi(x) = Euler totient function (A000010). %C A247174 Numbers n such that A000010(n) = A000010(n+1) and simultaneously A029940(n) = A029940(n+1). %C A247174 4294967295 is also a term of this sequence. %C A247174 Intersection of A001274 and A248795. %H A247174 Amiram Eldar, <a href="/A247174/b247174.txt">Table of n, a(n) for n = 1..213</a> (terms below 10^13, calculated using the b-file at A001274) %e A247174 15 is in the sequence because phi(15) = phi(16) = 8 and simultaneously Product_{d|15} phi(d) = Product_{d|(15+1)} phi(d) = 64. %t A247174 a247174[n_Integer] := Module[{a001274, a248795}, %t A247174 a001274[m_] := Select[Range[m], EulerPhi[#] == EulerPhi[# + 1] &]; %t A247174 a248795[m_] := %t A247174 Select[Range[m], %t A247174 Product[EulerPhi[i], {i, Divisors[#]}] == %t A247174 Product[EulerPhi[j], {j, Divisors[# + 1]}] &]; %t A247174 Intersection[a001274[n], a248795[n]]] (* _Michael De Vlieger_, Dec 01 2014 *) %o A247174 (Magma) [n: n in [1..100000] | (&*[EulerPhi(d): d in Divisors(n)]) eq (&*[EulerPhi(d): d in Divisors(n+1)]) and EulerPhi(n) eq EulerPhi(n+1)] %o A247174 (Magma) [n: n in [A248795(n)] | EulerPhi(n) eq EulerPhi(n+1)] %Y A247174 Cf. A000010, A001274, A029940, A248795. %K A247174 nonn %O A247174 1,2 %A A247174 _Jaroslav Krizek_, Nov 22 2014 %E A247174 a(6)-a(19) using A248795 by _Jaroslav Krizek_, Nov 25 2014