This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247176 #59 Jun 01 2015 18:22:04 %S A247176 0,1,2,3,3,5,5,7,5,7,8,11,11,5,13,13,14,11,15,17,19,19,21,23,23,19,23, %T A247176 23,27,23,24,29,29,31,33,31,35,33,37,37,35,31,34,41,43,43,45,43,47,47, %U A247176 46,45,51,47,53,53,53,55,56,53,59,55,61,61,63,61,63,65,67,67,69,67 %N A247176 Largest number of maximal order mod n. %H A247176 Eric Chen, <a href="/A247176/b247176.txt">Table of n, a(n) for n = 1..1000</a> %e A247176 a(18) = 11 because the largest possible order mod 18 is 6, and because 16, 15, 14, and 12 are not coprime to 18, and the orders of 17 and 13 to mod 18 are 2 and 3, not the largest possible order, and the order of 11 to mod 18 is 6, so a(18) = 11. %t A247176 prms={}; f[n_] = Block[If[MultiplicativeOrder[p, n]=CarmichaelLambda[n], Join[prms, p]]; prms[-1]]; Array[f, 128] %o A247176 (PARI) carmichaellambda(n)=lcm(znstar(n)[2]); %o A247176 for(i=1, 128, p=0; for(q=1, i-1, if(gcd(q, i)==1&&znorder(Mod(q, i))==carmichaellambda(i), p=q)); print1(p", ")) %Y A247176 Cf. A002322 (orders), same as A046146 for n with primitive roots, A071894 (for primes). %Y A247176 Cf. A111076, A111725, A046145, A046144, A001918, A008330. %K A247176 nonn,easy %O A247176 1,3 %A A247176 _Eric Chen_, Nov 29 2014 %E A247176 a(68) corrected by _Eric Chen_, Jun 01 2015