This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247200 #33 Sep 08 2022 08:46:09 %S A247200 71,99,101,109,131,139,155,169,181,197,199,221,229,239,241,251,259, %T A247200 265,281,287,289,307,309,311,323,337,339,341,349,365,371,373,379,391, %U A247200 401,407,409,419,431,433,439,441,443,461,469,475,485,491,493,499,505,517,519 %N A247200 Odd numbers which are neither of the form p*2^m + 1 nor of the form p*2^m - 1 with p prime. %C A247200 For each n, the sequence has a set of n consecutive odd numbers. %C A247200 For any n, the number 2*A140077(n) + 1 is in the sequence. %C A247200 Every number of the form S*2^n + 1 or R*2^n - 1 with n > 0, where S is a composite SierpiĆski number and R is a composite Riesel number, is in the sequence. %C A247200 Odd numbers n such that (n-1)/A007814(n-1) and (n+1)/A007814(n+1) are composite. - _Robert Israel_, Nov 19 2014 %p A247200 filter:= proc(n) %p A247200 local m1,m2; %p A247200 m1:= padic[ordp](n-1,2); %p A247200 if n-1 = 2^m1 then return false fi; %p A247200 m2:= padic[ordp](n+1,2); %p A247200 n+1 <> 2^m2 and not isprime((n-1)/2^m1) and not isprime((n+1)/2^m2); %p A247200 end proc: %p A247200 select(filter, [seq(2*i+1,i=0..1000)]); # _Robert Israel_, Nov 19 2014 %o A247200 (Magma) lst1:=[]; lst2:=[]; r:=519; t:=Floor(Log(2, r))-1; for m in [0..t] do e:=Floor(r/2^m); for p in [2..e] do if IsPrime(p) then a:=p*2^m-1; b:=p*2^m+1; if not a in lst1 then Append(~lst1, a); end if; if not b in lst1 then Append(~lst1, b); end if; end if; end for; end for; for n in [3..r by 2] do if not n in lst1 then Append(~lst2, n); end if; end for; lst2; %o A247200 (PARI) b=0; forstep(n=1, 519, 2, c=2^floor(log(n)/log(2)); a=b; b=(n+1)/gcd(n+1, c); if(a>8&&!isprime(a)&&!isprime(b), print1(n, ", "))); %Y A247200 Cf. A007814, A140077. %K A247200 nonn %O A247200 1,1 %A A247200 _Arkadiusz Wesolowski_, Nov 18 2014