This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247213 #20 Oct 13 2017 21:38:03 %S A247213 1,2,4,8,16,32,64,105,128,210,256,315,420,512,630,840,1024,1260,1575, %T A247213 1680,2048,2520,3150,3360,4096,5040,6300,6720,8192,10080,11025,12600, %U A247213 13440,16384,20160,22050,25200,26880,32768,33075,40320,44100,50400,53760,65536 %N A247213 Numbers n = Product_(p_i^e_i) such that nn = Product_((p_i + 2)^e_i) is divisible by n. %C A247213 That is, numbers n, such that A166590(n) is divisible by n. %C A247213 A000079, powers of 2, is a subsequence. %C A247213 _Thomas Ordowski_ remarks that the only squarefrees of this sequence are: 1, 2, 105, and 210. %H A247213 Chai Wah Wu, <a href="/A247213/b247213.txt">Table of n, a(n) for n = 1..164</a> %e A247213 A166590(2)=4 is divisible by 2, so 2 is in the sequence. %e A247213 A166590(105) = A166590(3*5*7) = 5*7*9 = 3*(3*5*7), so 105 is in the sequence. %t A247213 a247213[n_] := Select[Range@n, Mod[Times @@ Power @@@ Transpose[{Plus[First /@ FactorInteger@#, 2], Last /@ FactorInteger@#}], #] == 0 &]; a247213[2^16] (* _Michael De Vlieger_, Jan 07 2015 *) %o A247213 (PARI) isok(n) = { f = factor(n); for (i=1, #f~, f[i,1] += 2); newn = factorback(f); newn % n == 0;} %o A247213 (Python) %o A247213 from operator import mul %o A247213 from functools import reduce %o A247213 from sympy import factorint %o A247213 A247213_list = [n for n in range(1,10**4) if n <= 1 or not reduce(mul,[(p+2)**e for p,e in factorint(n).items()]) % n] %o A247213 # _Chai Wah Wu_, Jan 05 2015 %Y A247213 Cf. A000079, A166590. %K A247213 nonn %O A247213 1,2 %A A247213 _Michel Marcus_, after a suggestion from _Thomas Ordowski_, Nov 26 2014