This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247214 #11 Mar 14 2018 03:54:28 %S A247214 2,31995179,164785447,316880647,339916651,360930071,378400069, %T A247214 417340783,520750033,658458037,755787181,786882449,848389303, %U A247214 873370961,899228951,945287471,951718213,1007089619,1011319249,1029754933,1322303371,1396138687,1469853361,1513858729,1572717287,1642086109,1705284811,1829330071 %N A247214 Common prime bases of 1093 and 3511 as generalized Wieferich primes. %C A247214 Primes p such that p^1092 == 1 (mod 1093^2) and p^3510 == 1 (mod 3511^2). Here 1093 and 3511 are the currently known Wieferich primes (A001220) and thus p=2 belongs to this sequence by definition. %C A247214 Prime terms of A247208. %H A247214 Robert Israel, <a href="/A247214/b247214.txt">Table of n, a(n) for n = 1..1000</a> %p A247214 S1:= sort(map(rhs@op, [msolve(p^1092=1,1093^2)])): %p A247214 S2:= map(rhs@op, {msolve(p^3510=1,3511^2)}): %p A247214 Res:= NULL: %p A247214 for k from 0 to 2000 do %p A247214 for j in S1 do %p A247214 p:= 1093^2*k+j; %p A247214 if member(p mod 3511^2, S2) and isprime(p) then %p A247214 Res:= Res, p; %p A247214 fi %p A247214 od od: %p A247214 Res; # _Robert Israel_, Mar 13 2018 %Y A247214 Cf. A247208 %K A247214 nonn %O A247214 1,1 %A A247214 _Max Alekseyev_, Nov 25 2014