cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247214 Common prime bases of 1093 and 3511 as generalized Wieferich primes.

This page as a plain text file.
%I A247214 #11 Mar 14 2018 03:54:28
%S A247214 2,31995179,164785447,316880647,339916651,360930071,378400069,
%T A247214 417340783,520750033,658458037,755787181,786882449,848389303,
%U A247214 873370961,899228951,945287471,951718213,1007089619,1011319249,1029754933,1322303371,1396138687,1469853361,1513858729,1572717287,1642086109,1705284811,1829330071
%N A247214 Common prime bases of 1093 and 3511 as generalized Wieferich primes.
%C A247214 Primes p such that p^1092 == 1 (mod 1093^2) and p^3510 == 1 (mod 3511^2). Here 1093 and 3511 are the currently known Wieferich primes (A001220) and thus p=2 belongs to this sequence by definition.
%C A247214 Prime terms of A247208.
%H A247214 Robert Israel, <a href="/A247214/b247214.txt">Table of n, a(n) for n = 1..1000</a>
%p A247214 S1:= sort(map(rhs@op, [msolve(p^1092=1,1093^2)])):
%p A247214 S2:= map(rhs@op, {msolve(p^3510=1,3511^2)}):
%p A247214 Res:= NULL:
%p A247214 for k from 0 to 2000 do
%p A247214   for j in S1 do
%p A247214     p:= 1093^2*k+j;
%p A247214     if member(p mod 3511^2, S2) and isprime(p) then
%p A247214       Res:= Res, p;
%p A247214     fi
%p A247214 od od:
%p A247214 Res; # _Robert Israel_, Mar 13 2018
%Y A247214 Cf. A247208
%K A247214 nonn
%O A247214 1,1
%A A247214 _Max Alekseyev_, Nov 25 2014