This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247215 #20 Mar 25 2025 11:17:23 %S A247215 0,8,280,9520,323408,10986360,373212840,12678250208,430687294240, %T A247215 14630689753960,497012764340408,16883803297819920,573552299361536880, %U A247215 19483894374994434008,661878856450449219400,22484397224940279025600,763807626791519037651008 %N A247215 Integers k such that 3k+1 and 6k+1 are both squares. %H A247215 Colin Barker, <a href="/A247215/b247215.txt">Table of n, a(n) for n = 1..650</a> %H A247215 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1). %F A247215 a(n) = (1/72)*(3*(3*(17-12*sqrt(2))^n+2*sqrt(2)*(17-12*sqrt(2))^n+3*(17+12*sqrt(2))^n-2*sqrt(2)*(17+12*sqrt(2))^n)-18). %F A247215 From _Colin Barker_, Nov 26 2014: (Start) %F A247215 a(n) = 8*A029546(n). %F A247215 a(n) = 35*a(n-1)-35*a(n-2)+a(n-3). %F A247215 G.f.: -8*x^2 / ((x-1)*(x^2-34*x+1)). %F A247215 (End) %F A247215 Lim_{n -> infinity} a(n+1)/a(n) = 33.970562748... = (1+sqrt(2))^4 (the dominant root of x^2-34*x+1). - _Joerg Arndt_, Dec 01 2014 %e A247215 When n=1, a(1)=0, 3(0)+1=1, 6(0)+1=1. %e A247215 When n=2, a(2)=8, 3(8)+1=25, 6(8)+1=49. %e A247215 When n=3, a(3)=280, 3(280)+1=841=29^2, 6(280)+1=1681=41^2. %e A247215 When n=4, a(4)=9520, 3(9520)+1=28560=169^2, 6(9520)+1=57121=239^2. %t A247215 LinearRecurrence[{35,-35,1},{0,8,280},20] (* _Harvey P. Dale_, Mar 25 2025 *) %o A247215 (PARI) concat(0, Vec(-8*x^2/((x-1)*(x^2-34*x+1)) + O(x^100))) \\ _Colin Barker_, Nov 26 2014 %Y A247215 The common terms of A062717 and A001082. %K A247215 nonn,easy %O A247215 1,2 %A A247215 _Casey Leung_, Nov 26 2014 %E A247215 More terms from _Colin Barker_, Nov 26 2014