This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247219 #34 Jun 27 2024 22:21:45 %S A247219 2,4,16,36,256,456,1296,2556,4356,6480,8008,11952,26320,44100,47520, %T A247219 47880,49680,57240,65536,74448,84420,97812,141156,157080,165600, %U A247219 225456,278496,310590,333432,365940,403900,419710,476736,557040,560736,576720,647088,1011960,1033056,1204560,1206180 %N A247219 Positive numbers m such that m^2 - 1 divides 2^m - 1. %C A247219 Contains all numbers of the form m = A001146(k) = 2^2^k, k >= 0; and those with k > 1 seem to form the intersection with A247165. - _M. F. Hasler_, Jul 25 2015 %H A247219 Chai Wah Wu, <a href="/A247219/b247219.txt">Table of n, a(n) for n = 1..105</a> %e A247219 2 is in this sequence because 2^2 - 1 = 3 divides 2^2 - 1 = 3. %t A247219 Select[Range[10^4], Divisible[2^# - 1, #^2 - 1] &] (* _Alonso del Arte_, Nov 26 2014 *) %t A247219 Select[Range[2,121*10^4],PowerMod[2,#,#^2-1]==1&] (* _Harvey P. Dale_, Sep 08 2021 *) %o A247219 (Magma) [n: n in [2..122222] | Denominator((2^n - 1)/(n^2 - 1)) eq 1]; %o A247219 (PARI) isok(n) = ((2^n - 1) % (n^2 - 1)) == 0; \\ _Michel Marcus_, Nov 26 2014 %o A247219 (Python) %o A247219 from gmpy2 import powmod %o A247219 A247219_list = [n for n in range(2,10**7) if powmod(2,n,n*n-1) == 1] %o A247219 # _Chai Wah Wu_, Dec 03 2014 %o A247219 (PARI) forstep(n=0,1e8,2, Mod(2,n^2-1)^n-1 || print1(n", ")) \\ _M. F. Hasler_, Jul 25 2015 %Y A247219 Cf. A081762. %K A247219 nonn %O A247219 1,1 %A A247219 _Juri-Stepan Gerasimov_, Nov 26 2014 %E A247219 Corrected a(24) by _Chai Wah Wu_, Dec 03 2014