This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247222 #23 Jun 10 2016 05:08:37 %S A247222 1,39,793,7137,76921,863577,2076867,4317885,8329831,23402223,53695813, %T A247222 55871145,224905437,243762649,1449786951,2631094837,2781581517, %U A247222 3606816823,6105766123,6605555983,6838433189,8771312043,13907907585,35225161895,42580779709,56541691089 %N A247222 Numbers n such that n = gcd(n^2, sigma(n^2)). %C A247222 Previous name was: Numbers n such that numerator(sigma(n^2)/n^2)*denominator(sigma(n^2)/n^2) = sigma(n^2). %C A247222 That is, numbers n, such that A249670(n^2) = A000203(n^2). %C A247222 Appears to be a subsequence of A232354. %H A247222 Giovanni Resta, <a href="/A247222/b247222.txt">Table of n, a(n) for n = 1..48</a> (terms < 10^12) %e A247222 sigma(39^2)/39^2 = 61/39 = 2379 = sigma(39^2), so 39 is a term. %t A247222 Select[Range[10^6], GCD[#^2, DivisorSigma[1, #^2]] == # &] (* _Giovanni Resta_, Jun 10 2016 *) %o A247222 (PARI) isok(n) = {ab = sigma(n^2)/n^2; numerator(ab)*denominator(ab) == sigma(n^2);} %o A247222 (PARI) {isa(n) = if( n<1, 0, n == gcd(n^2, sigma(n^2)))}; /* _Michael Somos_, Nov 26 2014 */ %Y A247222 Cf. A000203, A249670, A249671. %K A247222 nonn %O A247222 1,2 %A A247222 _Michel Marcus_, Nov 26 2014 %E A247222 New name after _Michael Somos_ by _Michel Marcus_, Nov 27 2014 %E A247222 a(13)-a(14) from _Michel Marcus_, Nov 27 2014 %E A247222 a(15)-a(26) from _Giovanni Resta_, Jun 10 2016