This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247236 #14 Jan 12 2015 17:50:08 %S A247236 1,-1,2,-1,-10,3,-1,26,-33,4,-1,-54,207,-76,5,-1,96,-993,824,-145,6, %T A247236 -1,-156,4047,-6736,2375,-246,7,-1,236,-14769,46184,-28985,5634,-385, %U A247236 8,-1,-340,49743,-280408,293575,-95166,11711,-568,9,-1,470,-157617,1556672,-2609465,1322334,-260449,22112,-801,10 %N A247236 Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x+k)^k. %C A247236 Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = T(n,0)*(x+0)^0 + T(n,1)*(x+1)^1 + T(n,2)*(x+2)^2 + ... + T(n,n)*(x+n)^n, for n >= 0. %F A247236 T(n,n) = n+1 = A000027(n+1), n >= 0. %F A247236 T(n,1) = ((-1)^n*(1-4*n^3-10*n^2-4*n)-1)/8 = 2*(-1)^(n+1)*A002717(n), for n >= 1. %F A247236 T(n,n-1) = n - n^2 - n^3 (A085490), for n >= 1. %F A247236 T(n,n-2) = (n^5-2*n^4-3*n^3+6*n^2-2)/2, for n >= 2. %e A247236 From _Wolfdieter Lang_, Jan 12 2015: (Start) %e A247236 The triangle T(n,k) starts: %e A247236 n\k 0 1 2 3 4 5 6 7 8 9 ... %e A247236 0: 1 %e A247236 1: -1 2 %e A247236 2: -1 -10 3 %e A247236 3: -1 26 -33 4 %e A247236 4: -1 -54 207 -76 5 %e A247236 5: -1 96 -993 824 -145 6 %e A247236 6: -1 -156 4047 -6736 2375 -246 7 %e A247236 7: -1 236 -14769 46184 -28985 5634 -385 8 %e A247236 8: -1 -340 49743 -280408 293575 -95166 11711 -568 9 %e A247236 9: -1 470 -157617 1556672 -2609465 1322334 -260449 22112 -801 10 %e A247236 ... Reformatted. %e A247236 --------------------------------------------------------------------- %e A247236 n=3: 1 + 2*x + 3*x^2 + 4*x^3 = -1*(x+0)^0 + 26*(x+1)^1 - 33*(x+2)^2 + 4*(x+3)^3. (End) %o A247236 (PARI) T(n,k)=(k+1)-sum(i=k+1,n,i^(i-k)*binomial(i,k)*T(n,i)) %o A247236 for(n=0,10,for(k=0,n,print1(T(n,k),", "))) %Y A247236 Cf. A248345, A000027, A002717, A085490. %K A247236 sign,tabl %O A247236 0,3 %A A247236 _Derek Orr_, Nov 27 2014 %E A247236 Edited. - _Wolfdieter Lang_, Jan 12 2015