A247237 Triangle read by rows: T(n,k) is the coefficient in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x-k)^k.
1, 3, 2, 3, 14, 3, 3, 50, 39, 4, 3, 130, 279, 84, 5, 3, 280, 1479, 984, 155, 6, 3, 532, 6519, 8544, 2675, 258, 7, 3, 924, 25335, 61464, 34035, 6138, 399, 8, 3, 1500, 89847, 388056, 356595, 106938, 12495, 584, 9, 3, 2310, 297207, 2225136, 3259635, 1524438, 284655, 23264, 819, 10
Offset: 0
Examples
From _Wolfdieter Lang_, Jan 14 2015: (Start) The triangle T(n,k) starts: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 3 2 2: 3 14 3 3: 3 50 39 4 4: 3 130 279 84 5 5: 3 280 1479 984 155 6 6: 3 532 6519 8544 2675 258 7 7: 3 924 25335 61464 34035 6138 399 8 8: 3 1500 89847 388056 356595 106938 12495 584 9 9: 3 2310 297207 2225136 3259635 1524438 284655 23264 819 10 ... ----------------------------------------------------------------- n = 3: 1 + 2*x + 3*x^2 + 4*x^3 = 3*(x-0)^0 + 50*(x-1)^1 + 39*(x-2)^2 + 4*(x-3)^3. (End)
Programs
-
PARI
T(n,k)=(k+1)-sum(i=k+1,n,(-i)^(i-k)*binomial(i,k)*T(n,i)) for(n=0,10,for(k=0,n,print1(T(n,k),", ")))
Formula
Extensions
Edited by Wolfdieter Lang, Jan 14 2015
Comments